"landscape debris removal Las Vegas","Unleash the full beauty of landscape debris removal Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Best Landscaping Las Vegas Nevada. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape debris removal Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape design ideas Las Vegas","Combine style and function in landscape design ideas Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Expert Landscaping Services in Las Vegas Nevada. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape design ideas Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape inspiration Las Vegas","Reinvent your exterior with landscape inspiration Las Vegas. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape inspiration Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape gallery Las Vegas","Achieve remarkable results with landscape gallery Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape gallery Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape portfolio Las Vegas","Optimize your property through landscape portfolio Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Top Landscaping in Las Vegas Nevada. Our proven expertise in landscape portfolio Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape estimates Las Vegas","Reach new heights of design with landscape estimates Las Vegas. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape estimates Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape quotes Las Vegas","Combine style and function in landscape quotes Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape quotes Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape pricing Las Vegas","Unleash the full beauty of landscape pricing Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. Best Landscaping Nevada USA. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape pricing Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape cost Las Vegas","Embrace the possibilities with landscape cost Las Vegas. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape cost Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
succulent garden Las Vegas
"landscape budget Las Vegas","Optimize your property through landscape budget Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat.
Las Vegas landscaping - Organic ranking improvements
Search intent alignment
Google Knowledge Panel
Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape budget Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape project Las Vegas","Maximize every square foot with landscape project Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape project Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape development Las Vegas","Infuse creativity into landscape development Las Vegas. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape development Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape improvement Las Vegas","Enhance curb appeal via landscape improvement Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape improvement Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape enhancement Las Vegas","Reinvent your exterior with landscape enhancement Las Vegas. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape enhancement Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape transformation Las Vegas","Reinvent your exterior with landscape transformation Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape transformation Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
Las Vegas landscaping - Search query patterns
Google search console
Search query patterns
Organic ranking improvements
landscape specialist Las Vegas
"landscape makeover Las Vegas","Reach new heights of design with landscape makeover Las Vegas. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape makeover Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"landscape upgrade Las Vegas","Unlock sustainable benefits through landscape upgrade Las Vegas. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in landscape upgrade Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
retaining walls Las Vegas
"Landscaping Las Vegas","Elevate your surroundings through Landscaping Las Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in Landscaping Las Vegas ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"Landscaping Services inLas Vegas","Embrace the possibilities with Landscaping Services inLas Vegas. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Thoughtful lighting and smart controllers help create an appealing ambiance while maximizing efficiency. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in Landscaping Services inLas Vegas ensures that each project receives a tailored approach.
Las Vegas landscaping - Organic ranking improvements
Google rich results
Content authority signals
Google core updates
Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations."
"Las Vegas landscaping","Infuse creativity into Las Vegas landscaping. Many companies focus on resource-saving techniques, including drip irrigation and drought-resistant plants. Customers can enjoy sustainable, vibrant spaces that also reduce water usage and routine upkeep. Whether you prefer minimalistic rock gardens or lush greenery, skilled experts can tailor designs to your taste. Professionals in this region craft visually appealing, water-conscious environments well-suited to desert conditions. By blending native plants, rock formations, and efficient irrigation, you can establish a long-lasting outdoor retreat. Simple additions, like seating areas or decorative pavers, can turn unused corners into welcoming havens. Incorporating region-specific materials leads to seamless integration with the surrounding desert environment. Our proven expertise in Las Vegas landscaping ensures that each project receives a tailored approach. Ultimately, careful planning and professional expertise guarantee outstanding outdoor transformations. Moreover, incredibly, furthermore, ultimately, incredibly."
About Garden
Planned space for displaying plants and other forms of nature
A garden is a planned space, usually outdoors, set aside for the cultivation, display, and enjoyment of plants and other forms of nature. The single feature identifying even the wildest wild garden is control. The garden can incorporate both natural and artificial materials.[1]
Gardens often have design features including statuary, follies, pergolas, trellises, stumperies, dry creek beds, and water features such as fountains, ponds (with or without fish), waterfalls or creeks. Some gardens are for ornamental purposes only, while others also produce food crops, sometimes in separate areas, or sometimes intermixed with the ornamental plants. Food-producing gardens are distinguished from farms by their smaller scale, more labor-intensive methods, and their purpose (enjoyment of a pastime or self-sustenance rather than producing for sale, as in a market garden). Flower gardens combine plants of different heights, colors, textures, and fragrances to create interest and delight the senses.[2]
The most common form today is a residential or public garden, but the term garden has traditionally been a more general one. Zoos, which display wild animals in simulated natural habitats, were formerly called zoological gardens.[3][4] Western gardens are almost universally based on plants, with garden, which etymologically implies enclosure, often signifying a shortened form of botanical garden. Some traditional types of eastern gardens, such as Zen gardens, however, use plants sparsely or not at all. Landscape gardens, on the other hand, such as the English landscape gardens first developed in the 18th century, may decide to omit flowers altogether.
The etymology of the word gardening refers to enclosure: it is from Middle English gardin, from Anglo-French gardin, jardin, of Germanic origin; akin to Old High German gard, gart, an enclosure or compound, as in Stuttgart. See Grad (Slavic settlement) for more complete etymology.[6] The words yard, court, and Latin hortus (meaning "garden", hence horticulture and orchard), are cognates—all referring to a defined enclosed space.[7]
The term "garden" in British English refers to a small enclosed area of land, usually adjoining a building.[8] This would be referred to as a yard in American English.[9]
The earliest recorded Chinese gardens were created in the valley of the Yellow River, during the Shang dynasty (1600–1046 BC). These gardens were large enclosed parks where the kings and nobles hunted game, or where fruit and vegetables were grown. Early inscriptions from this period, carved on tortoise shells, have three Chinese characters for garden, you, pu and yuan. You was a royal garden where birds and animals were kept, while pu was a garden for plants. During the Qin dynasty (221–206 BC), yuan became the character for all gardens.[10] The old character for yuan is a small picture of a garden; it is enclosed in a square which can represent a wall, and has symbols which can represent the plan of a structure, a small square which can represent a pond, and a symbol for a plantation or a pomegranate tree.[11]
A famous royal garden of the late Shang dynasty was the Terrace, Pond and Park of the Spirit (Lingtai, Lingzhao Lingyou) built by King Wenwang west of his capital city, Yin. The park was described in the Classic of Poetry this way:
The King makes his promenade in the Park of the Spirit,
The deer are kneeling on the grass, feeding their fawns,
The deer are beautiful and resplendent.
The immaculate cranes have plumes of a brilliant white.
The King makes his promenade to the Pond of the Spirit,
During the Spring and Autumn period (722–481 BC), in 535 BC, the Terrace of Shanghua, with lavishly decorated palaces, was built by King Jing of the Zhou dynasty. In 505 BC, an even more elaborate garden, the Terrace of Gusu, was begun. It was located on the side of a mountain, and included a series of terraces connected by galleries, along with a lake where boats in the form of blue dragons navigated. From the highest terrace, a view extended as far as Lake Tai, the Great Lake.[15]
Manasollasa is a twelfth century Sanskrit text that offers details on garden design and a variety of other subjects.[16] Both public parks and woodland gardens are described, with about 40 types of trees recommended for the park in the Vana-krida chapter.[16][17]Shilparatna, a text from the sixteenth century, states that flower gardens or public parks should be located in the northern portion of a town.[18]
The earliest recorded Japanese gardens were the pleasure gardens of the Emperors and nobles. They were mentioned in several brief passages of the Nihon Shoki, the first chronicle of Japanese history, published in 720 CE. In spring 74 CE, the chronicle recorded: "The Emperor KeikÅ put a few carp into a pond, and rejoiced to see them morning and evening". The following year, "The Emperor launched a double-hulled boat in the pond of Ijishi at Ihare, and went aboard with his imperial concubine, and they feasted sumptuously together". In 486, the chronicle recorded that "The Emperor KenzÅ went into the garden and feasted at the edge of a winding stream".[19]
Korean gardens are a type of garden described as being natural, informal, simple and unforced, seeking to merge with the natural world.[20] They have a history that goes back more than two thousand years,[21] but are little known in the west. The oldest records date to the Three Kingdoms period (57 BC – 668 AD) when architecture and palace gardens showed a development noted in the Korean History of the Three Kingdoms.
Gardening was not recognized as an art form in Europe until the mid 16th century when it entered the political discourse, as a symbol of the concept of the "ideal republic". Evoking utopian imagery of the Garden of Eden, a time of abundance and plenty where humans didn't know hunger or the conflicts that arose from property disputes. John Evelyn wrote in the early 17th century, "there is not a more laborious life then is that of a good Gard'ners; but a labour full of tranquility and satisfaction; Natural and Instructive, and such as (if any) contributes to Piety and Contemplation."[22] During the era of Enclosures, the agrarian collectivism of the feudal age was idealized in literary "fantasies of liberating regression to garden and wilderness".[23]
Following his campaign in Italy in 1495, where he saw the gardens and castles of Naples, King Charles VIII brought Italian craftsmen and garden designers, such as Pacello da Mercogliano, from Naples and ordered the construction of Italian-style gardens at his residence at the Château d'Amboise and at Château Gaillard, another private résidence in Amboise. His successor Henry II, who had also travelled to Italy and had met Leonardo da Vinci, created an Italian garden nearby at the Château de Blois.[24] Beginning in 1528, King Francis I created new gardens at the Château de Fontainebleau, which featured fountains, parterres, a forest of pine trees brought from Provence, and the first artificial grotto in France.[25] The Château de Chenonceau had two gardens in the new style, one created for Diane de Poitiers in 1551, and a second for Catherine de' Medici in 1560.[26] In 1536, the architect Philibert de l'Orme, upon his return from Rome, created the gardens of the Château d'Anet following the Italian rules of proportion. The carefully prepared harmony of Anet, with its parterres and surfaces of water integrated with sections of greenery, became one of the earliest and most influential examples of the classic French garden.[27]
The French formal garden (French: jardin à la française) contrasted with the design principles of the English landscape garden (French: jardin à l'anglaise) namely, to "force nature" instead of leaving it undisturbed.[28] Typical French formal gardens had "parterres, geometrical shapes and neatly clipped topiary", in contrast to the English style of garden in which "plants and shrubs seem to grow naturally without artifice."[29] By the mid-17th century axial symmetry had ascended to prominence in the French gardening traditions of Andre Mollet and Jacques Boyceau, from which the latter wrote: "All things, however beautiful they may be chosen, will be defective if they are not ordered and placed in proper symmetry."[30] A good example of the French formal style are the Tuileries gardens in Paris which were originally designed during the reign of King Henry II in the mid-sixteenth century. The gardens were redesigned into the formal French style for the Sun King Louis XIV. The gardens were ordered into symmetrical lines: long rows of elm or chestnut trees, clipped hedgerows, along with parterres, "reflect[ing] the orderly triumph of man's will over nature."[31]
The French landscape garden was influenced by the English landscape garden and gained prominence in the late eighteenth century.[32][33]
Before the Grand Manner era, a few significant gardens were found in Britain which were developed under the influence of the continent. Britain's homegrown domestic gardening traditions were mostly practical in purpose, rather than aesthetic, unlike the grand gardens found mostly on castle grounds and less commonly in universities. Tudor Gardens emphasized contrast rather than transitions, distinguished by color and illusion. They were not intended as a complement to home or architecture, but conceived as independent spaces, arranged to grow and display flowers and ornamental plants. Gardeners demonstrated their artistry in knot gardens, with complex arrangements most commonly included interwoven box hedges, and less commonly fragrant herbs like rosemary. Sanded paths run between the hedgings of open knots whereas closed knots were filled with single colored flowers. The knot and parterre gardens were always placed on level ground, and elevated areas reserved for terraces from which the intricacy of the gardens could be viewed.[30]
Jacobean gardens were described as "a delightful confusion" by Henry Wotton in 1624. Under the influence of the Italian Renaissance, Caroline gardens began to shed some of the chaos of earlier designs, marking the beginning of a trends towards symmetrical unified designs that took the building architecture into account, and featuring an elevated terrace from which home and garden could be viewed. The only surviving Caroline garden is located at Bolsover Castle in Derbyshire, but is too simple to attract much interest. During the reign of Charles II, many new Baroque style country houses were built; while in England Oliver Cromwell sought to destroy many Tudor, Jacobean and Caroline style gardens.[30]
Garden design is the process of creating plans for the layout and planting of gardens and landscapes. Gardens may be designed by garden owners themselves, or by professionals. Professional garden designers tend to be trained in principles of design and horticulture, and have a knowledge and experience of using plants. Some professional garden designers are also landscape architects, a more formal level of training that usually requires an advanced degree and often an occupational license.
Elements of garden design include the layout of hard landscape, such as paths, rockeries, walls, water features, sitting areas and decking, as well as the plants themselves, with consideration for their horticultural requirements, their season-to-season appearance, lifespan, growth habit, size, speed of growth, and combinations with other plants and landscape features. Most gardens consist of a mixture of natural and constructed elements, although even very 'natural' gardens are always an inherently artificial creation. Natural elements present in a garden principally comprise flora (such as trees and weeds), fauna (such as arthropods and birds), soil, water, air and light. Constructed elements include not only paths, patios, decking, sculptures, drainage systems, lights and buildings (such as sheds, gazebos, pergolas and follies), but also living constructions such as flower beds, ponds and lawns.
Garden needs of maintenance are also taken into consideration. Including the time or funds available for regular maintenance, (this can affect the choices of plants regarding speed of growth) spreading or self-seeding of the plants (annual or perennial), bloom-time, and many other characteristics. Garden design can be roughly divided into two groups, formal and naturalistic gardens. The most important consideration in any garden design is how the garden will be utilised, followed closely by the desired stylistic genres, and the way the garden space will connect to the home or other structures in the surrounding areas. All of these considerations are subject to the budget limitations. Budget limitations can be addressed by a simpler garden style with fewer plants and less costly hard landscape materials, seeds rather than sod for lawns, and plants that grow quickly; alternatively, garden owners may choose to create their garden over time, area by area.[34]
Gardeners may cause environmental damage by the way they garden, or they may enhance their local environment. Damage by gardeners can include direct destruction of natural habitats when houses and gardens are created; indirect habitat destruction and damage to provide garden materials such as peat,[35] rock for rock gardens,[36] and by the use of tapwater to irrigate gardens; the death of living beings in the garden itself, such as the killing not only of slugs and snails but also their predators such as hedgehogs and song thrushes by metaldehyde slug killer; the death of living beings outside the garden, such as local species extinction by indiscriminate plant collectors; and climate change caused by greenhouse gases produced by gardening.
Gardeners can help to prevent climate change in many ways, including the use of trees, shrubs, ground cover plants and other perennial plants in their gardens, turning garden waste into soil organic matter instead of burning it, keeping soil and compost heaps aerated, avoiding peat, switching from power tools to hand tools or changing their garden design so that power tools are not needed, and using nitrogen-fixing plants instead of nitrogen fertiliser.[37]
Climate change will have many impacts on gardens; some studies suggest most of them will be negative.[38] Gardens also contribute to climate change. Greenhouse gases can be produced by gardeners in many ways. The three main greenhouse gases are carbon dioxide, methane, and nitrous oxide. Gardeners produce carbon dioxide directly by overcultivating soil and destroying soil carbon, by burning garden waste on bonfires, by using power tools which burn fossil fuel or use electricity generated by fossil fuels, and by using peat. Gardeners produce methane by compacting the soil and making it anaerobic, and by allowing their compost heaps to become compacted and anaerobic. Gardeners produce nitrous oxide by applying excess nitrogen fertiliser when plants are not actively growing so that the nitrogen in the fertiliser is converted by soil bacteria to nitrous oxide.
Some gardeners manage their gardens without using any water from outside the garden. Examples in Britain include Ventnor Botanic Garden on the Isle of Wight, and parts of Beth Chatto's garden in Essex, Sticky Wicket garden in Dorset, and the Royal Horticultural Society's gardens at Harlow Carr and Hyde Hall. Rain gardens absorb rainfall falling onto nearby hard surfaces, rather than sending it into stormwater drains.[39]
^Schur, Norman; Ehrlich, Eugene; Ehrlich, Richard (1987). British English from A to Zed: A Definitive Guide to the Queen's English. Skyhorse. p. 146. ISBN9781620875773.
^Feng Chaoxiong, The Classical Gardens of Suzhou, preface, and Bing Chiu, Jardins de Chine, ou la quete du paradis, Editions de La Martiniere, Paris 2010, p. 10–11.
^Tong Jun, Records of Jiang Gardens, cited in Feng Chanoxiong, The Classical Gardens of Suzhou.
^Translation in Jardins de Chine, ou la quête du paradis, cited in Che Bing Chiu, Jardins de Chine, ou la quete du paradis, p. 11.
^Tan, p. 10. See also Che Bing Chiu, Jardins de Chine, ou la quete du paradis, p. 11.
^Che Bing Chiu, Jardins de Chine, ou la quete du paradis, p. 11.
^Weiss, Allan (1995). Mirrors of Infinity: The French Formal Garden and 17th-Century Metaphysics. Princeton Architectural Press. p. 15. ISBN9781568980508.
^Scurr, Ruth (2022). Napoleon: A Life in Gardens and Shadows. Vintage. p. 15.
^ abcHayes, Gordon (2013). Landscape and Garden Design: Lessons from History. Whittle. pp. 1–3. ISBN978-1849950824.
^Scurr, Ruth (2022). Napoleon: A Life in Gardens and Shadows. Vintage. p. 29.
^Calder, Martin (2006). Experiencing the Garden in the Eighteenth Century. Lang. p. 9. ISBN9783039102914.
^Weiss, Allan (1995). Mirrors of Infinity: The French Formal Garden and 17th-Century Metaphysics. Princeton Architectural Press. p. 15. ISBN9781568980508.
^Ingram, David S.; Vince-Prue, Daphne; Gregory, Peter J., eds. (2008). Science and the Garden: The scientific basis of horticultural practice. Oxford: Blackwell. ISBN978-1-4051-6063-6.
^Bisgrove, R.; Hadley, P. (2002). Gardening in the global greenhouse: the impacts of climate change on gardens in the UK (Report). S2CID127801132.
^Dunnett and Clayden, Nigel and Andy (2007). Rain Gardens: Managing Water Sustainably in the Garden and Designed Landscape. Portland, OR: Timber Press. ISBN978-0-88192-826-6.
Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water,[1] and is the most widely used building material.[2] Concrete is the most manufactured material on Earth.[3]
When aggregate is mixed with dry Portland cement and water, the mixture forms a fluid slurry that can be poured and molded into shape. The cement reacts with the water through a process called hydration[4] that hardens it over several hours to form a solid matrix that binds the materials together into a durable stone-like material that has many uses.[5] This time allows concrete to not only be cast in forms, but also to have a variety of tooled processes performed. The hydration process is exothermic, which means that ambient temperature plays a significant role in how long it takes concrete to set. Often, additives (such as pozzolans or superplasticizers) are included in the mixture to improve the physical properties of the wet mix, delay or accelerate the curing time, or otherwise modify the finished material. Most structural concrete is poured with reinforcing materials (such as steel rebar) embedded to provide tensile strength, yielding reinforced concrete.
Before the invention of Portland cement in the early 1800s, lime-based cement binders, such as lime putty, were often used. The overwhelming majority of concretes are produced using Portland cement, but sometimes with other hydraulic cements, such as calcium aluminate cement.[6][7] Many other non-cementitious types of concrete exist with other methods of binding aggregate together, including asphalt concrete with a bitumen binder, which is frequently used for road surfaces, and polymer concretes that use polymers as a binder.
Concrete is distinct from mortar.[8] Whereas concrete is itself a building material, and contains both coarse (large) and fine (small) aggregate particles, mortar contains only fine aggregates and is mainly used as a bonding agent to hold bricks, tiles and other masonry units together.[9]Grout is another material associated with concrete and cement. It also does not contain coarse aggregates and is usually either pourable or thixotropic, and is used to fill gaps between masonry components or coarse aggregate which has already been put in place. Some methods of concrete manufacture and repair involve pumping grout into the gaps to make up a solid mass in situ.
The word concrete comes from the Latin word "concretus" (meaning compact or condensed),[10] the perfect passive participle of "concrescere", from "con-" (together) and "crescere" (to grow).
Concrete floors were found in the royal palace of Tiryns, Greece, which dates roughly to 1400 to 1200 BC.[11][12] Lime mortars were used in Greece, such as in Crete and Cyprus, in 800 BC. The Assyrian Jerwan Aqueduct (688 BC) made use of waterproof concrete.[13] Concrete was used for construction in many ancient structures.[14]
Mayan concrete at the ruins of Uxmal (AD 850–925) is referenced in Incidents of Travel in the Yucatán by John L. Stephens. "The roof is flat and had been covered with cement". "The floors were cement, in some places hard, but, by long exposure, broken, and now crumbling under the feet." "But throughout the wall was solid, and consisting of large stones imbedded in mortar, almost as hard as rock."
Small-scale production of concrete-like materials was pioneered by the Nabatean traders who occupied and controlled a series of oases and developed a small empire in the regions of southern Syria and northern Jordan from the 4th century BC. They discovered the advantages of hydraulic lime, with some self-cementing properties, by 700 BC. They built kilns to supply mortar for the construction of rubble masonry houses, concrete floors, and underground waterproof cisterns. They kept the cisterns secret as these enabled the Nabataeans to thrive in the desert.[15] Some of these structures survive to this day.[15]
Exterior of the Roman Pantheon, finished 128 AD, the largest unreinforced concrete dome in the world.[17]Interior of the Pantheon dome, seen from beneath. The concrete for the coffered dome was laid on moulds, mounted on temporary scaffolding.Opus caementicium exposed in a characteristic Roman arch. In contrast to modern concrete structures, the concrete used in Roman buildings was usually covered with brick or stone.
Concrete, as the Romans knew it, was a new and revolutionary material. Laid in the shape of arches, vaults and domes, it quickly hardened into a rigid mass, free from many of the internal thrusts and strains that troubled the builders of similar structures in stone or brick.[22]
Modern tests show that opus caementicium had a similar compressive strength to modern Portland-cement concrete (c. 200 kg/cm2 [20 MPa; 2,800 psi]).[23] However, due to the absence of reinforcement, its tensile strength was far lower than modern reinforced concrete, and its mode of application also differed:[24]
Modern structural concrete differs from Roman concrete in two important details. First, its mix consistency is fluid and homogeneous, allowing it to be poured into forms rather than requiring hand-layering together with the placement of aggregate, which, in Roman practice, often consisted of rubble. Second, integral reinforcing steel gives modern concrete assemblies great strength in tension, whereas Roman concrete could depend only upon the strength of the concrete bonding to resist tension.[25]
The long-term durability of Roman concrete structures has been found to be due to its use of pyroclastic (volcanic) rock and ash, whereby the crystallization of strätlingite (a complex calcium aluminosilicate hydrate)[26] and the coalescence of this and similar calcium–aluminium-silicate–hydrate cementing binders helped give the concrete a greater degree of fracture resistance even in seismically active environments.[27] Roman concrete is significantly more resistant to erosion by seawater than modern concrete; it used pyroclastic materials which react with seawater to form Al-tobermorite crystals over time.[28][29] The use of hot mixing and the presence of lime clasts have been proposed to give the concrete a self-healing ability, where cracks that form become filled with calcite that prevents the crack from spreading.[30][31]
The widespread use of concrete in many Roman structures ensured that many survive to the present day. The Baths of Caracalla in Rome are just one example. Many Roman aqueducts and bridges, such as the magnificent Pont du Gard in southern France, have masonry cladding on a concrete core, as does the dome of the Pantheon.
After the Roman Empire, the use of burned lime and pozzolana was greatly reduced. Low kiln temperatures in the burning of lime, lack of pozzolana, and poor mixing all contributed to a decline in the quality of concrete and mortar. From the 11th century, the increased use of stone in church and castle construction led to an increased demand for mortar. Quality began to improve in the 12th century through better grinding and sieving. Medieval lime mortars and concretes were non-hydraulic and were used for binding masonry, "hearting" (binding rubble masonry cores) and foundations. Bartholomaeus Anglicus in his De proprietatibus rerum (1240) describes the making of mortar. In an English translation from 1397, it reads "lyme ... is a stone brent; by medlynge thereof with sonde and water sement is made". From the 14th century, the quality of mortar was again excellent, but only from the 17th century was pozzolana commonly added.[32]
Perhaps the greatest step forward in the modern use of concrete was Smeaton's Tower, built by British engineer John Smeaton in Devon, England, between 1756 and 1759. This third Eddystone Lighthouse pioneered the use of hydraulic lime in concrete, using pebbles and powdered brick as aggregate.[34]
A method for producing Portland cement was developed in England and patented by Joseph Aspdin in 1824.[35] Aspdin chose the name for its similarity to Portland stone, which was quarried on the Isle of Portland in Dorset, England. His son William continued developments into the 1840s, earning him recognition for the development of "modern" Portland cement.[36]
Reinforced concrete was invented in 1849 by Joseph Monier.[37] and the first reinforced concrete house was built by François Coignet[38] in 1853. The first concrete reinforced bridge was designed and built by Joseph Monier in 1875.[39]
Concrete is an artificial composite material, comprising a matrix of cementitious binder (typically Portland cement paste or asphalt) and a dispersed phase or "filler" of aggregate (typically a rocky material, loose stones, and sand). The binder "glues" the filler together to form a synthetic conglomerate.[41] Many types of concrete are available, determined by the formulations of binders and the types of aggregate used to suit the application of the engineered material. These variables determine strength and density, as well as chemical and thermal resistance of the finished product.
Cement paste, most commonly made of Portland cement, is the most prevalent kind of concrete binder. For cementitious binders, water is mixed with the dry cement powder and aggregate, which produces a semi-liquid slurry (paste) that can be shaped, typically by pouring it into a form. The concrete solidifies and hardens through a chemical process called hydration. The water reacts with the cement, which bonds the other components together, creating a robust, stone-like material. Other cementitious materials, such as fly ash and slag cement, are sometimes added—either pre-blended with the cement or directly as a concrete component—and become a part of the binder for the aggregate.[42] Fly ash and slag can enhance some properties of concrete such as fresh properties and durability.[42] Alternatively, other materials can also be used as a concrete binder: the most prevalent substitute is asphalt, which is used as the binder in asphalt concrete.
Structures employing Portland cement concrete usually include steel reinforcement because this type of concrete can be formulated with high compressive strength, but always has lower tensile strength. Therefore, it is usually reinforced with materials that are strong in tension, typically steelrebar.
The mix design depends on the type of structure being built, how the concrete is mixed and delivered, and how it is placed to form the structure.
Several tons of bagged cement, about two minutes of output from a 10,000 ton per day cement kiln
Portland cement is the most common type of cement in general usage. It is a basic ingredient of concrete, mortar, and many plasters.[43] It consists of a mixture of calcium silicates (alite, belite), aluminates and ferrites—compounds, which will react with water. Portland cement and similar materials are made by heating limestone (a source of calcium) with clay or shale (a source of silicon, aluminium and iron) and grinding this product (called clinker) with a source of sulfate (most commonly gypsum).
Cement kilns are extremely large, complex, and inherently dusty industrial installations. Of the various ingredients used to produce a given quantity of concrete, the cement is the most energetically expensive. Even complex and efficient kilns require 3.3 to 3.6 gigajoules of energy to produce a ton of clinker and then grind it into cement. Many kilns can be fueled with difficult-to-dispose-of wastes, the most common being used tires. The extremely high temperatures and long periods of time at those temperatures allows cement kilns to efficiently and completely burn even difficult-to-use fuels.[44] The five major compounds of calcium silicates and aluminates comprising Portland cement range from 5 to 50% in weight.
Combining water with a cementitious material forms a cement paste by the process of hydration. The cement paste glues the aggregate together, fills voids within it, and makes it flow more freely.[45]
As stated by Abrams' law, a lower water-to-cement ratio yields a stronger, more durable concrete, whereas more water gives a freer-flowing concrete with a higher slump.[46] The hydration of cement involves many concurrent reactions. The process involves polymerization, the interlinking of the silicates and aluminate components as well as their bonding to sand and gravel particles to form a solid mass.[47] One illustrative conversion is the hydration of tricalcium silicate:
Fine and coarse aggregates make up the bulk of a concrete mixture. Sand, natural gravel, and crushed stone are used mainly for this purpose. Recycled aggregates (from construction, demolition, and excavation waste) are increasingly used as partial replacements for natural aggregates, while a number of manufactured aggregates, including air-cooled blast furnace slag and bottom ash are also permitted.
The size distribution of the aggregate determines how much binder is required. Aggregate with a very even size distribution has the biggest gaps whereas adding aggregate with smaller particles tends to fill these gaps. The binder must fill the gaps between the aggregate as well as paste the surfaces of the aggregate together, and is typically the most expensive component. Thus, variation in sizes of the aggregate reduces the cost of concrete.[49] The aggregate is nearly always stronger than the binder, so its use does not negatively affect the strength of the concrete.
Redistribution of aggregates after compaction often creates non-homogeneity due to the influence of vibration. This can lead to strength gradients.[50]
Decorative stones such as quartzite, small river stones or crushed glass are sometimes added to the surface of concrete for a decorative "exposed aggregate" finish, popular among landscape designers.
Admixtures are materials in the form of powder or fluids that are added to the concrete to give it certain characteristics not obtainable with plain concrete mixes. Admixtures are defined as additions "made as the concrete mix is being prepared".[51] The most common admixtures are retarders and accelerators. In normal use, admixture dosages are less than 5% by mass of cement and are added to the concrete at the time of batching/mixing.[52] (See § Production below.) The common types of admixtures[53] are as follows:
Accelerators speed up the hydration (hardening) of the concrete. Typical materials used are calcium chloride, calcium nitrate and sodium nitrate. However, use of chlorides may cause corrosion in steel reinforcing and is prohibited in some countries, so that nitrates may be favored, even though they are less effective than the chloride salt. Accelerating admixtures are especially useful for modifying the properties of concrete in cold weather.
Air entraining agents add and entrain tiny air bubbles in the concrete, which reduces damage during freeze-thaw cycles, increasing durability. However, entrained air entails a tradeoff with strength, as each 1% of air may decrease compressive strength by 5%.[54] If too much air becomes trapped in the concrete as a result of the mixing process, defoamers can be used to encourage the air bubble to agglomerate, rise to the surface of the wet concrete and then disperse.
Bonding agents are used to create a bond between old and new concrete (typically a type of polymer) with wide temperature tolerance and corrosion resistance.
Corrosion inhibitors are used to minimize the corrosion of steel and steel bars in concrete.
Crystalline admixtures are typically added during batching of the concrete to lower permeability. The reaction takes place when exposed to water and un-hydrated cement particles to form insoluble needle-shaped crystals, which fill capillary pores and micro-cracks in the concrete to block pathways for water and waterborne contaminates. Concrete with crystalline admixture can expect to self-seal as constant exposure to water will continuously initiate crystallization to ensure permanent waterproof protection.
Pigments can be used to change the color of concrete, for aesthetics.
Plasticizers increase the workability of plastic, or "fresh", concrete, allowing it to be placed more easily, with less consolidating effort. A typical plasticizer is lignosulfonate. Plasticizers can be used to reduce the water content of a concrete while maintaining workability and are sometimes called water-reducers due to this use. Such treatment improves its strength and durability characteristics.
Superplasticizers (also called high-range water-reducers) are a class of plasticizers that have fewer deleterious effects and can be used to increase workability more than is practical with traditional plasticizers. Superplasticizers are used to increase compressive strength. It increases the workability of the concrete and lowers the need for water content by 15–30%.
Pumping aids improve pumpability, thicken the paste and reduce separation and bleeding.
Retarders slow the hydration of concrete and are used in large or difficult pours where partial setting is undesirable before completion of the pour. Typical retarders include sugar, sodium gluconate, citric acid, and tartaric acid.[55]
^Specific surface measurements for silica fume by nitrogen adsorption (BET) method, others by air permeability method (Blaine).
Inorganic materials that have pozzolanic or latent hydraulic properties, these very fine-grained materials are added to the concrete mix to improve the properties of concrete (mineral admixtures),[52] or as a replacement for Portland cement (blended cements).[59] Products which incorporate limestone, fly ash, blast furnace slag, and other useful materials with pozzolanic properties into the mix, are being tested and used. These developments are ever growing in relevance to minimize the impacts caused by cement use, notorious for being one of the largest producers (at about 5 to 10%) of global greenhouse gas emissions.[60] The use of alternative materials also is capable of lowering costs, improving concrete properties, and recycling wastes, the latest being relevant for circular economy aspects of the construction industry, whose demand is ever growing with greater impacts on raw material extraction, waste generation and landfill practices.
Fly ash: A by-product of coal-fired electric generating plants, it is used to partially replace Portland cement (by up to 60% by mass). The properties of fly ash depend on the type of coal burnt. In general, siliceous fly ash is pozzolanic, while calcareous fly ash has latent hydraulic properties.[61]
Silica fume: A by-product of the production of silicon and ferrosiliconalloys. Silica fume is similar to fly ash, but has a particle size 100 times smaller. This results in a higher surface-to-volume ratio and a much faster pozzolanic reaction. Silica fume is used to increase strength and durability of concrete, but generally requires the use of superplasticizers for workability.[63]
High reactivity metakaolin (HRM): Metakaolin produces concrete with strength and durability similar to concrete made with silica fume. While silica fume is usually dark gray or black in color, high-reactivity metakaolin is usually bright white in color, making it the preferred choice for architectural concrete where appearance is important.
Carbon nanofibers can be added to concrete to enhance compressive strength and gain a higher Young's modulus, and also to improve the electrical properties required for strain monitoring, damage evaluation and self-health monitoring of concrete. Carbon fiber has many advantages in terms of mechanical and electrical properties (e.g., higher strength) and self-monitoring behavior due to the high tensile strength and high electrical conductivity.[64]
Carbon products have been added to make concrete electrically conductive, for deicing purposes.[65]
New research from Japan's University of Kitakyushu shows that a washed and dried recycled mix of used diapers can be an environmental solution to producing less landfill and using less sand in concrete production. A model home was built in Indonesia to test the strength and durability of the new diaper-cement composite.[66]
Concrete production is the process of mixing together the various ingredients—water, aggregate, cement, and any additives—to produce concrete. Concrete production is time-sensitive. Once the ingredients are mixed, workers must put the concrete in place before it hardens. In modern usage, most concrete production takes place in a large type of industrial facility called a concrete plant, or often a batch plant. The usual method of placement is casting in formwork, which holds the mix in shape until it has set enough to hold its shape unaided.
Concrete plants come in two main types, ready-mix plants and central mix plants. A ready-mix plant blends all of the solid ingredients, while a central mix does the same but adds water. A central-mix plant offers more precise control of the concrete quality. Central mix plants must be close to the work site where the concrete will be used, since hydration begins at the plant.
A concrete plant consists of large hoppers for storage of various ingredients like cement, storage for bulk ingredients like aggregate and water, mechanisms for the addition of various additives and amendments, machinery to accurately weigh, move, and mix some or all of those ingredients, and facilities to dispense the mixed concrete, often to a concrete mixer truck.
Modern concrete is usually prepared as a viscous fluid, so that it may be poured into forms. The forms are containers that define the desired shape. Concrete formwork can be prepared in several ways, such as slip forming and steel plate construction. Alternatively, concrete can be mixed into dryer, non-fluid forms and used in factory settings to manufacture precast concrete products.
Interruption in pouring the concrete can cause the initially placed material to begin to set before the next batch is added on top. This creates a horizontal plane of weakness called a cold joint between the two batches.[67] Once the mix is where it should be, the curing process must be controlled to ensure that the concrete attains the desired attributes. During concrete preparation, various technical details may affect the quality and nature of the product.
Design mix ratios are decided by an engineer after analyzing the properties of the specific ingredients being used. Instead of using a 'nominal mix' of 1 part cement, 2 parts sand, and 4 parts aggregate, a civil engineer will custom-design a concrete mix to exactly meet the requirements of the site and conditions, setting material ratios and often designing an admixture package to fine-tune the properties or increase the performance envelope of the mix. Design-mix concrete can have very broad specifications that cannot be met with more basic nominal mixes, but the involvement of the engineer often increases the cost of the concrete mix.
Concrete mixes are primarily divided into nominal mix, standard mix and design mix.
Nominal mix ratios are given in volume of . Nominal mixes are a simple, fast way of getting a basic idea of the properties of the finished concrete without having to perform testing in advance.
Various governing bodies (such as British Standards) define nominal mix ratios into a number of grades, usually ranging from lower compressive strength to higher compressive strength. The grades usually indicate the 28-day cure strength.[68]
Thorough mixing is essential to produce uniform, high-quality concrete.
Separate paste mixing has shown that the mixing of cement and water into a paste before combining these materials with aggregates can increase the compressive strength of the resulting concrete.[69] The paste is generally mixed in a high-speed, shear-type mixer at a w/c (water to cement ratio) of 0.30 to 0.45 by mass. The cement paste premix may include admixtures such as accelerators or retarders, superplasticizers, pigments, or silica fume. The premixed paste is then blended with aggregates and any remaining batch water and final mixing is completed in conventional concrete mixing equipment.[70]
Resonant acoustic mixing has also been found effective in producing ultra-high performance cementitious materials, as it produces a dense matrix with low porosity.[71]
Concrete floor of a parking garage being placedPouring and smoothing out concrete at Palisades Park in Washington, DC
Workability is the ability of a fresh (plastic) concrete mix to fill the form/mold properly with the desired work (pouring, pumping, spreading, tamping, vibration) and without reducing the concrete's quality. Workability depends on water content, aggregate (shape and size distribution), cementitious content and age (level of hydration) and can be modified by adding chemical admixtures, like superplasticizer. Raising the water content or adding chemical admixtures increases concrete workability. Excessive water leads to increased bleeding or segregation of aggregates (when the cement and aggregates start to separate), with the resulting concrete having reduced quality. Changes in gradation can also affect workability of the concrete, although a wide range of gradation can be used for various applications.[72][73] An undesirable gradation can mean using a large aggregate that is too large for the size of the formwork, or which has too few smaller aggregate grades to serve to fill the gaps between the larger grades, or using too little or too much sand for the same reason, or using too little water, or too much cement, or even using jagged crushed stone instead of smoother round aggregate such as pebbles. Any combination of these factors and others may result in a mix which is too harsh, i.e., which does not flow or spread out smoothly, is difficult to get into the formwork, and which is difficult to surface finish.[74]
Workability can be measured by the concrete slump test, a simple measure of the plasticity of a fresh batch of concrete following the ASTM C 143 or EN 12350-2 test standards. Slump is normally measured by filling an "Abrams cone" with a sample from a fresh batch of concrete. The cone is placed with the wide end down onto a level, non-absorptive surface. It is then filled in three layers of equal volume, with each layer being tamped with a steel rod to consolidate the layer. When the cone is carefully lifted off, the enclosed material slumps a certain amount, owing to gravity. A relatively dry sample slumps very little, having a slump value of one or two inches (25 or 50 mm) out of one foot (300 mm). A relatively wet concrete sample may slump as much as eight inches. Workability can also be measured by the flow table test.
Slump can be increased by addition of chemical admixtures such as plasticizer or superplasticizer without changing the water-cement ratio.[75] Some other admixtures, especially air-entraining admixture, can increase the slump of a mix.
High-flow concrete, like self-consolidating concrete, is tested by other flow-measuring methods. One of these methods includes placing the cone on the narrow end and observing how the mix flows through the cone while it is gradually lifted.
After mixing, concrete is a fluid and can be pumped to the location where needed.
Concrete must be kept moist during curing in order to achieve optimal strength and durability.[76] During curing hydration occurs, allowing calcium-silicate hydrate (C-S-H) to form. Over 90% of a mix's final strength is typically reached within four weeks, with the remaining 10% achieved over years or even decades.[77] The conversion of calcium hydroxide in the concrete into calcium carbonate from absorption of CO2 over several decades further strengthens the concrete and makes it more resistant to damage. This carbonation reaction, however, lowers the pH of the cement pore solution and can corrode the reinforcement bars.
Hydration and hardening of concrete during the first three days is critical. Abnormally fast drying and shrinkage due to factors such as evaporation from wind during placement may lead to increased tensile stresses at a time when it has not yet gained sufficient strength, resulting in greater shrinkage cracking. The early strength of the concrete can be increased if it is kept damp during the curing process. Minimizing stress prior to curing minimizes cracking. High-early-strength concrete is designed to hydrate faster, often by increased use of cement that increases shrinkage and cracking. The strength of concrete changes (increases) for up to three years. It depends on cross-section dimension of elements and conditions of structure exploitation.[50] Addition of short-cut polymer fibers can improve (reduce) shrinkage-induced stresses during curing and increase early and ultimate compression strength.[78]
Properly curing concrete leads to increased strength and lower permeability and avoids cracking where the surface dries out prematurely. Care must also be taken to avoid freezing or overheating due to the exothermic setting of cement. Improper curing can cause spalling, reduced strength, poor abrasion resistance and cracking.
Curing techniques avoiding water loss by evaporation
During the curing period, concrete is ideally maintained at controlled temperature and humidity. To ensure full hydration during curing, concrete slabs are often sprayed with "curing compounds" that create a water-retaining film over the concrete. Typical films are made of wax or related hydrophobic compounds. After the concrete is sufficiently cured, the film is allowed to abrade from the concrete through normal use.[79]
Traditional conditions for curing involve spraying or ponding the concrete surface with water. The adjacent picture shows one of many ways to achieve this, ponding—submerging setting concrete in water and wrapping in plastic to prevent dehydration. Additional common curing methods include wet burlap and plastic sheeting covering the fresh concrete.
For higher-strength applications, accelerated curing techniques may be applied to the concrete. A common technique involves heating the poured concrete with steam, which serves to both keep it damp and raise the temperature so that the hydration process proceeds more quickly and more thoroughly.
Asphalt concrete (commonly called asphalt,[80]blacktop, or pavement in North America, and tarmac, bitumen macadam, or rolled asphalt in the United Kingdom and Ireland) is a composite material commonly used to surface roads, parking lots, airports, as well as the core of embankment dams.[81] Asphalt mixtures have been used in pavement construction since the beginning of the twentieth century.[82] It consists of mineral aggregatebound together with asphalt, laid in layers, and compacted. The process was refined and enhanced by Belgian inventor and U.S. immigrant Edward De Smedt.[83]
The terms asphalt (or asphaltic) concrete, bituminous asphalt concrete, and bituminous mixture are typically used only in engineering and construction documents, which define concrete as any composite material composed of mineral aggregate adhered with a binder. The abbreviation, AC, is sometimes used for asphalt concrete but can also denote asphalt content or asphalt cement, referring to the liquid asphalt portion of the composite material.
Graphene enhanced concretes are standard designs of concrete mixes, except that during the cement-mixing or production process, a small amount of chemically engineered graphene(typically < 0.5% by weight) is added.[84][85] These enhanced graphene concretes are designed around the concrete application.
Bacteria such as Bacillus pasteurii, Bacillus pseudofirmus, Bacillus cohnii, Sporosarcina pasteuri, and Arthrobacter crystallopoietes increase the compression strength of concrete through their biomass. However some forms of bacteria can also be concrete-destroying.[86] Bacillus sp. CT-5. can reduce corrosion of reinforcement in reinforced concrete by up to four times. Sporosarcina pasteurii reduces water and chloride permeability. B. pasteurii increases resistance to acid.[87]Bacillus pasteurii and B. sphaericuscan induce calcium carbonate precipitation in the surface of cracks, adding compression strength.[88]
Decorative plate made of Nano concrete with High-Energy Mixing (HEM)
Nanoconcrete (also spelled "nano concrete"' or "nano-concrete") is a class of materials that contains Portland cement particles that are no greater than 100 μm[89] and particles of silica no greater than 500 μm, which fill voids that would otherwise occur in normal concrete, thereby substantially increasing the material's strength.[90] It is widely used in foot and highway bridges where high flexural and compressive strength are indicated.[88]
Pervious concrete is a mix of specially graded coarse aggregate, cement, water, and little-to-no fine aggregates. This concrete is also known as "no-fines" or porous concrete. Mixing the ingredients in a carefully controlled process creates a paste that coats and bonds the aggregate particles. The hardened concrete contains interconnected air voids totaling approximately 15 to 25 percent. Water runs through the voids in the pavement to the soil underneath. Air entrainment admixtures are often used in freeze-thaw climates to minimize the possibility of frost damage. Pervious concrete also permits rainwater to filter through roads and parking lots, to recharge aquifers, instead of contributing to runoff and flooding.[91]
Polymer concretes are mixtures of aggregate and any of various polymers and may be reinforced. The cement is costlier than lime-based cements, but polymer concretes nevertheless have advantages; they have significant tensile strength even without reinforcement, and they are largely impervious to water. Polymer concretes are frequently used for the repair and construction of other applications, such as drains.
Plant fibers and particles can be used in a concrete mix or as a reinforcement.[92][93][94] These materials can increase ductility but the lignocellulosic particles hydrolyze during concrete curing as a result of alkaline environment and elevated temperatures[95][96][97] Such process, that is difficult to measure,[98] can affect the properties of the resulting concrete.
Volcanic concrete substitutes volcanic rock for the limestone that is burned to form clinker. It consumes a similar amount of energy, but does not directly emit carbon as a byproduct.[99] Volcanic rock/ash are used as supplementary cementitious materials in concrete to improve the resistance to sulfate, chloride and alkali silica reaction due to pore refinement.[100] Also, they are generally cost effective in comparison to other aggregates,[101] good for semi and light weight concretes,[101] and good for thermal and acoustic insulation.[101]
Pyroclastic materials, such as pumice, scoria, and ashes are formed from cooling magma during explosive volcanic eruptions. They are used as supplementary cementitious materials (SCM) or as aggregates for cements and concretes.[102] They have been extensively used since ancient times to produce materials for building applications. For example, pumice and other volcanic glasses were added as a natural pozzolanic material for mortars and plasters during the construction of the Villa San Marco in the Roman period (89 BC – 79 AD), which remain one of the best-preserved otium villae of the Bay of Naples in Italy.[103]
Waste light is a form of polymer modified concrete. The specific polymer admixture allows the replacement of all the traditional aggregates (gravel, sand, stone) by any mixture of solid waste materials in the grain size of 3–10 mm to form a low-compressive-strength (3–20 N/mm2) product[104] for road and building construction. One cubic meter of waste light concrete contains 1.1–1.3 m3 of shredded waste and no other aggregates.
Recycled aggregate concretes are standard concrete mixes with the addition or substitution of natural aggregates with recycled aggregates sourced from construction and demolition wastes, disused pre-cast concretes or masonry. In most cases, recycled aggregate concrete results in higher water absorption levels by capillary action and permeation, which are the prominent determiners of the strength and durability of the resulting concrete. The increase in water absorption levels is mainly caused by the porous adhered mortar that exists in the recycled aggregates. Accordingly, recycled concrete aggregates that have been washed to reduce the quantity of mortar adhered to aggregates show lower water absorption levels compared to untreated recycled aggregates.
The quality of the recycled aggregate concrete is determined by several factors, including the size, the number of replacement cycles, and the moisture levels of the recycled aggregates. When the recycled concrete aggregates are crushed into coarser fractures, the mixed concrete shows better permeability levels, resulting in an overall increase in strength. In contrast, recycled masonry aggregates provide better qualities when crushed in finer fractures. With each generation of recycled concrete, the resulting compressive strength decreases.
Concrete has relatively high compressive strength, but much lower tensile strength.[105] Therefore, it is usually reinforced with materials that are strong in tension (often steel). The elasticity of concrete is relatively constant at low stress levels but starts decreasing at higher stress levels as matrix cracking develops. Concrete has a very low coefficient of thermal expansion and shrinks as it matures. All concrete structures crack to some extent, due to shrinkage and tension. Concrete that is subjected to long-duration forces is prone to creep.
Tests can be performed to ensure that the properties of concrete correspond to specifications for the application.
Compression testing of a concrete cylinder
The ingredients affect the strengths of the material. Concrete strength values are usually specified as the lower-bound compressive strength of either a cylindrical or cubic specimen as determined by standard test procedures.
The strengths of concrete is dictated by its function. Very low-strength—14 MPa (2,000 psi) or less—concrete may be used when the concrete must be lightweight.[106] Lightweight concrete is often achieved by adding air, foams, or lightweight aggregates, with the side effect that the strength is reduced. For most routine uses, 20 to 32 MPa (2,900 to 4,600 psi) concrete is often used. 40 MPa (5,800 psi) concrete is readily commercially available as a more durable, although more expensive, option. Higher-strength concrete is often used for larger civil projects.[107] Strengths above 40 MPa (5,800 psi) are often used for specific building elements. For example, the lower floor columns of high-rise concrete buildings may use concrete of 80 MPa (11,600 psi) or more, to keep the size of the columns small. Bridges may use long beams of high-strength concrete to lower the number of spans required.[108][109] Occasionally, other structural needs may require high-strength concrete. If a structure must be very rigid, concrete of very high strength may be specified, even much stronger than is required to bear the service loads. Strengths as high as 130 MPa (18,900 psi) have been used commercially for these reasons.[108]
The cement produced for making concrete accounts for about 8% of worldwide CO2 emissions per year (compared to, e.g., global aviation at 1.9%).[110][111] The two largest sources of CO2 are produced by the cement manufacturing process, arising from (1) the decarbonation reaction of limestone in the cement kiln (T ≈ 950 °C), and (2) from the combustion of fossil fuel to reach the sintering temperature (T ≈ 1450 °C) of cement clinker in the kiln. The energy required for extracting, crushing, and mixing the raw materials (construction aggregates used in the concrete production, and also limestone and clay feeding the cement kiln) is lower. Energy requirement for transportation of ready-mix concrete is also lower because it is produced nearby the construction site from local resources, typically manufactured within 100 kilometers of the job site.[112] The overall embodied energy of concrete at roughly 1 to 1.5 megajoules per kilogram is therefore lower than for many structural and construction materials.[113]
Once in place, concrete offers a great energy efficiency over the lifetime of a building.[114] Concrete walls leak air far less than those made of wood frames.[115] Air leakage accounts for a large percentage of energy loss from a home. The thermal mass properties of concrete increase the efficiency of both residential and commercial buildings. By storing and releasing the energy needed for heating or cooling, concrete's thermal mass delivers year-round benefits by reducing temperature swings inside and minimizing heating and cooling costs.[116] While insulation reduces energy loss through the building envelope, thermal mass uses walls to store and release energy. Modern concrete wall systems use both external insulation and thermal mass to create an energy-efficient building. Insulating concrete forms (ICFs) are hollow blocks or panels made of either insulating foam or rastra that are stacked to form the shape of the walls of a building and then filled with reinforced concrete to create the structure.
Boston City Hall (1968) is a Brutalist design constructed largely of precast and poured in place concrete.
Concrete buildings are more resistant to fire than those constructed using steel frames, since concrete has lower heat conductivity than steel and can thus last longer under the same fire conditions. Concrete is sometimes used as a fire protection for steel frames, for the same effect as above. Concrete as a fire shield, for example Fondu fyre, can also be used in extreme environments like a missile launch pad.
Options for non-combustible construction include floors, ceilings and roofs made of cast-in-place and hollow-core precast concrete. For walls, concrete masonry technology and Insulating Concrete Forms (ICFs) are additional options. ICFs are hollow blocks or panels made of fireproof insulating foam that are stacked to form the shape of the walls of a building and then filled with reinforced concrete to create the structure.
Concrete also provides good resistance against externally applied forces such as high winds, hurricanes, and tornadoes owing to its lateral stiffness, which results in minimal horizontal movement. However, this stiffness can work against certain types of concrete structures, particularly where a relatively higher flexing structure is required to resist more extreme forces.
As discussed above, concrete is very strong in compression, but weak in tension. Larger earthquakes can generate very large shear loads on structures. These shear loads subject the structure to both tensile and compressional loads. Concrete structures without reinforcement, like other unreinforced masonry structures, can fail during severe earthquake shaking. Unreinforced masonry structures constitute one of the largest earthquake risks globally.[117] These risks can be reduced through seismic retrofitting of at-risk buildings, (e.g. school buildings in Istanbul, Turkey).[118]
Concrete is one of the most durable building materials. It provides superior fire resistance compared with wooden construction and gains strength over time. Structures made of concrete can have a long service life.[119] Concrete is used more than any other artificial material in the world.[120] As of 2006, about 7.5 billion cubic meters of concrete are made each year, more than one cubic meter for every person on Earth.[121]
The use of reinforcement, in the form of iron was introduced in the 1850s by French industrialist François Coignet, and it was not until the 1880s that German civil engineer G. A. Wayss used steel as reinforcement. Concrete is a relatively brittle material that is strong under compression but less in tension. Plain, unreinforced concrete is unsuitable for many structures as it is relatively poor at withstanding stresses induced by vibrations, wind loading, and so on. Hence, to increase its overall strength, steel rods, wires, mesh or cables can be embedded in concrete before it is set. This reinforcement, often known as rebar, resists tensile forces.[123]
Reinforced concrete (RC) is a versatile composite and one of the most widely used materials in modern construction. It is made up of different constituent materials with very different properties that complement each other. In the case of reinforced concrete, the component materials are almost always concrete and steel. These two materials form a strong bond together and are able to resist a variety of applied forces, effectively acting as a single structural element.[124]
Reinforced concrete can be precast or cast-in-place (in situ) concrete, and is used in a wide range of applications such as; slab, wall, beam, column, foundation, and frame construction. Reinforcement is generally placed in areas of the concrete that are likely to be subject to tension, such as the lower portion of beams. Usually, there is a minimum of 50 mm cover, both above and below the steel reinforcement, to resist spalling and corrosion which can lead to structural instability.[123] Other types of non-steel reinforcement, such as Fibre-reinforced concretes are used for specialized applications, predominately as a means of controlling cracking.[124]
Precast concrete is concrete which is cast in one place for use elsewhere and is a mobile material. The largest part of precast production is carried out in the works of specialist suppliers, although in some instances, due to economic and geographical factors, scale of product or difficulty of access, the elements are cast on or adjacent to the construction site.[125] Precasting offers considerable advantages because it is carried out in a controlled environment, protected from the elements, but the downside of this is the contribution to greenhouse gas emission from transportation to the construction site.[124]
Advantages to be achieved by employing precast concrete:[125]
Preferred dimension schemes exist, with elements of tried and tested designs available from a catalogue.
Major savings in time result from manufacture of structural elements apart from the series of events which determine overall duration of the construction, known by planning engineers as the 'critical path'.
Availability of Laboratory facilities capable of the required control tests, many being certified for specific testing in accordance with National Standards.
Equipment with capability suited to specific types of production such as stressing beds with appropriate capacity, moulds and machinery dedicated to particular products.
High-quality finishes achieved direct from the mould eliminate the need for interior decoration and ensure low maintenance costs.
Aerial photo of reconstruction at Taum Sauk (Missouri) pumped storage facility in late November 2009. After the original reservoir failed, the new reservoir was made of roller-compacted concrete.
Due to cement's exothermic chemical reaction while setting up, large concrete structures such as dams, navigation locks, large mat foundations, and large breakwaters generate excessive heat during hydration and associated expansion. To mitigate these effects, post-cooling[126] is commonly applied during construction. An early example at Hoover Dam used a network of pipes between vertical concrete placements to circulate cooling water during the curing process to avoid damaging overheating. Similar systems are still used; depending on volume of the pour, the concrete mix used, and ambient air temperature, the cooling process may last for many months after the concrete is placed. Various methods also are used to pre-cool the concrete mix in mass concrete structures.[126]
Another approach to mass concrete structures that minimizes cement's thermal by-product is the use of roller-compacted concrete, which uses a dry mix which has a much lower cooling requirement than conventional wet placement. It is deposited in thick layers as a semi-dry material then roller compacted into a dense, strong mass.
Raw concrete surfaces tend to be porous and have a relatively uninteresting appearance. Many finishes can be applied to improve the appearance and preserve the surface against staining, water penetration, and freezing.
Examples of improved appearance include stamped concrete where the wet concrete has a pattern impressed on the surface, to give a paved, cobbled or brick-like effect, and may be accompanied with coloration. Another popular effect for flooring and table tops is polished concrete where the concrete is polished optically flat with diamond abrasives and sealed with polymers or other sealants.
Other finishes can be achieved with chiseling, or more conventional techniques such as painting or covering it with other materials.
The proper treatment of the surface of concrete, and therefore its characteristics, is an important stage in the construction and renovation of architectural structures.[127]
Prestressed concrete is a form of reinforced concrete that builds in compressive stresses during construction to oppose tensile stresses experienced in use. This can greatly reduce the weight of beams or slabs, by better distributing the stresses in the structure to make optimal use of the reinforcement. For example, a horizontal beam tends to sag. Prestressed reinforcement along the bottom of the beam counteracts this. In pre-tensioned concrete, the prestressing is achieved by using steel or polymer tendons or bars that are subjected to a tensile force prior to casting, or for post-tensioned concrete, after casting.
Pretensioned concrete is almost always precast, and contains steel wires (tendons) that are held in tension while the concrete is placed and sets around them.
Post-tensioned concrete has ducts through it. After the concrete has gained strength, tendons are pulled through the ducts and stressed. The ducts are then filled with grout. Bridges built in this way have experienced considerable corrosion of the tendons, so external post-tensioning may now be used in which the tendons run along the outer surface of the concrete.
Once mixed, concrete is typically transported to the place where it is intended to become a structural item. Various methods of transportation and placement are used depending on the distances involve, quantity needed, and other details of application. Large amounts are often transported by truck, poured free under gravity or through a tremie, or pumped through a pipe. Smaller amounts may be carried in a skip (a metal container which can be tilted or opened to release the contents, usually transported by crane or hoist), or wheelbarrow, or carried in toggle bags for manual placement underwater.
Pohjolatalo, an office building made of concrete in the city center of Kouvola in Kymenlaakso, Finland
Extreme weather conditions (extreme heat or cold; windy conditions, and humidity variations) can significantly alter the quality of concrete. Many precautions are observed in cold weather placement.[128] Low temperatures significantly slow the chemical reactions involved in hydration of cement, thus affecting the strength development. Preventing freezing is the most important precaution, as formation of ice crystals can cause damage to the crystalline structure of the hydrated cement paste. If the surface of the concrete pour is insulated from the outside temperatures, the heat of hydration will prevent freezing.
A period when for more than three successive days the average daily air temperature drops below 40 °F (~ 4.5 °C), and
Temperature stays below 50 °F (10 °C) for more than one-half of any 24-hour period.
In Canada, where temperatures tend to be much lower during the cold season, the following criteria are used by CSA A23.1:
When the air temperature is ≤ 5 °C, and
When there is a probability that the temperature may fall below 5 °C within 24 hours of placing the concrete.
The minimum strength before exposing concrete to extreme cold is 500 psi (3.4 MPa). CSA A 23.1 specified a compressive strength of 7.0 MPa to be considered safe for exposure to freezing.
Concrete may be placed and cured underwater. Care must be taken in the placement method to prevent washing out the cement. Underwater placement methods include the tremie, pumping, skip placement, manual placement using toggle bags, and bagwork.[130]
A tremie is a vertical, or near-vertical, pipe with a hopper at the top used to pour concrete underwater in a way that avoids washout of cement from the mix due to turbulent water contact with the concrete while it is flowing. This produces a more reliable strength of the product. The
toggle bag method is generally used for placing small quantities and for repairs. Wet concrete is loaded into a reusable canvas bag and squeezed out at the required place by the diver. Care must be taken to avoid washout of the cement and fines.
Underwater bagwork is the manual placement by divers of woven cloth bags containing dry mix, followed by piercing the bags with steel rebar pins to tie the bags together after every two or three layers, and create a path for hydration to induce curing, which can typically take about 6 to 12 hours for initial hardening and full hardening by the next day. Bagwork concrete will generally reach full strength within 28 days. Each bag must be pierced by at least one, and preferably up to four pins. Bagwork is a simple and convenient method of underwater concrete placement which does not require pumps, plant, or formwork, and which can minimise environmental effects from dispersing cement in the water. Prefilled bags are available, which are sealed to prevent premature hydration if stored in suitable dry conditions. The bags may be biodegradable.[131]
Grouted aggregate is an alternative method of forming a concrete mass underwater, where the forms are filled with coarse aggregate and the voids then completely filled from the bottom by displacing the water with pumped grout.[130]
Concrete roads are more fuel efficient to drive on,[132] more reflective and last significantly longer than other paving surfaces, yet have a much smaller market share than other paving solutions. Modern-paving methods and design practices have changed the economics of concrete paving, so that a well-designed and placed concrete pavement will be less expensive on initial costs and significantly less expensive over the life cycle. Another major benefit is that pervious concrete can be used, which eliminates the need to place storm drains near the road, and reducing the need for slightly sloped roadway to help rainwater to run off. No longer requiring discarding rainwater through use of drains also means that less electricity is needed (more pumping is otherwise needed in the water-distribution system), and no rainwater gets polluted as it no longer mixes with polluted water. Rather, it is immediately absorbed by the ground.[citation needed]
Cement molded into a forest of tubular structures can be 5.6 times more resistant to cracking/failure than standard concrete. The approach mimics mammalian cortical bone that features elliptical, hollow osteons suspended in an organic matrix, connected by relatively weak "cement lines". Cement lines provide a preferable in-plane crack path. This design fails via a "stepwise toughening mechanism". Cracks are contained within the tube, reducing spreading, by dissipating energy at each tube/step.[133]
Concrete dust emission from the use of power toolRecycled crushed concrete, to be reused as granular fill, is loaded into a semi-dump truck
Grinding of concrete can produce hazardous dust. Exposure to cement dust can lead to issues such as silicosis, kidney disease, skin irritation and similar effects. The U.S. National Institute for Occupational Safety and Health in the United States recommends attaching local exhaust ventilation shrouds to electric concrete grinders to control the spread of this dust. In addition, the Occupational Safety and Health Administration (OSHA) has placed more stringent regulations on companies whose workers regularly come into contact with silica dust. An updated silica rule, which OSHA put into effect 23 September 2017 for construction companies, restricted the amount of breathable crystalline silica workers could legally come into contact with to 50 micro grams per cubic meter of air per 8-hour workday. That same rule went into effect 23 June 2018 for general industry, hydraulic fracturing and maritime. That deadline was extended to 23 June 2021 for engineering controls in the hydraulic fracturing industry. Companies which fail to meet the tightened safety regulations can face financial charges and extensive penalties. The presence of some substances in concrete, including useful and unwanted additives, can cause health concerns due to toxicity and radioactivity. Fresh concrete (before curing is complete) is highly alkaline and must be handled with proper protective equipment.
A major component of concrete is cement, a fine powder used mainly to bind sand and coarser aggregates together in concrete. Although a variety of cement types exist, the most common is "Portland cement", which is produced by mixing clinker with smaller quantities of other additives such as gypsum and ground limestone. The production of clinker, the main constituent of cement, is responsible for the bulk of the sector's greenhouse gas emissions, including both energy intensity and process emissions.[134]
The cement industry is one of the three primary producers of carbon dioxide, a major greenhouse gas – the other two being energy production and transportation industries. On average, every tonne of cement produced releases one tonne of CO2 into the atmosphere. Pioneer cement manufacturers have claimed to reach lower carbon intensities, with 590 kg of CO2eq per tonne of cement produced.[135] The emissions are due to combustion and calcination processes,[136] which roughly account for 40% and 60% of the greenhouse gases, respectively. Considering that cement is only a fraction of the constituents of concrete, it is estimated that a tonne of concrete is responsible for emitting about 100–200 kg of CO2.[137][138] Every year more than 10 billion tonnes of concrete are used worldwide.[138] In the coming years, large quantities of concrete will continue to be used, and the mitigation of CO2 emissions from the sector will be even more critical.
Concrete is used to create hard surfaces that contribute to surface runoff, which can cause heavy soil erosion, water pollution, and flooding, but conversely can be used to divert, dam, and control flooding. Concrete dust released by building demolition and natural disasters can be a major source of dangerous air pollution. Concrete is a contributor to the urban heat island effect, though less so than asphalt.
Reducing the cement clinker content might have positive effects on the environmental life-cycle assessment of concrete. Some research work on reducing the cement clinker content in concrete has already been carried out. However, there exist different research strategies. Often replacement of some clinker for large amounts of slag or fly ash was investigated based on conventional concrete technology. This could lead to a waste of scarce raw materials such as slag and fly ash. The aim of other research activities is the efficient use of cement and reactive materials like slag and fly ash in concrete based on a modified mix design approach.[139]
The embodied carbon of a precast concrete facade can be reduced by 50% when using the presented fiber reinforced high performance concrete in place of typical reinforced concrete cladding.[140] Studies have been conducted about commercialization of low-carbon concretes. Life cycle assessment (LCA) of low-carbon concrete was investigated according to the ground granulated blast-furnace slag (GGBS) and fly ash (FA) replacement ratios. Global warming potential (GWP) of GGBS decreased by 1.1 kg CO2 eq/m3, while FA decreased by 17.3 kg CO2 eq/m3 when the mineral admixture replacement ratio was increased by 10%. This study also compared the compressive strength properties of binary blended low-carbon concrete according to the replacement ratios, and the applicable range of mixing proportions was derived.[141]
High-performance building materials will be particularly important for enhancing resilience, including for flood defenses and critical-infrastructure protection.[142] Risks to infrastructure and cities posed by extreme weather events are especially serious for those places exposed to flood and hurricane damage, but also where residents need protection from extreme summer temperatures. Traditional concrete can come under strain when exposed to humidity and higher concentrations of atmospheric CO2. While concrete is likely to remain important in applications where the environment is challenging, novel, smarter and more adaptable materials are also needed.[138][143]
Concrete degradation may have many different causes. Concrete is mostly damaged by the corrosion of reinforcement bars due to the carbonatation of hardened cement paste or chloride attack under wet conditions. Chemical damage is caused by the formation of expansive products produced by chemical reactions (from carbonatation, chlorides, sulfates and distillate water), by aggressive chemical species present in groundwater and seawater (chlorides, sulfates, magnesium ions), or by microorganisms (bacteria, fungi...) Other damaging processes can also involve calcium leaching by water infiltration, physical phenomena initiating cracks formation and propagation, fire or radiant heat, aggregate expansion, sea water effects, leaching, and erosion by fast-flowing water.[144]
Concrete recycling is the use of rubble from demolished concrete structures. Recycling is cheaper and more ecological than trucking rubble to a landfill.[145] Crushed rubble can be used for road gravel, revetments, retaining walls, landscaping gravel, or raw material for new concrete. Large pieces can be used as bricks or slabs, or incorporated with new concrete into structures, a material called urbanite.[146][147]
There have been concerns about the recycling of painted concrete due to possible lead content. Studies have indicated that recycled concrete exhibits lower strength and durability compared to concrete produced using natural aggregates.[148][149][150][151] This deficiency can be addressed by incorporating supplementary materials such as fly ash into the mixture.[152]
The world record for the largest concrete pour in a single project is the Three Gorges Dam in Hubei Province, China by the Three Gorges Corporation. The amount of concrete used in the construction of the dam is estimated at 16 million cubic meters over 17 years. The previous record was 12.3 million cubic meters held by Itaipu hydropower station in Brazil.[153][154][155]
The world record for concrete pumping was set on 7 August 2009 during the construction of the Parbati Hydroelectric Project, near the village of Suind, Himachal Pradesh, India, when the concrete mix was pumped through a vertical height of 715 m (2,346 ft).[156][157]
The Polavaram dam works in Andhra Pradesh on 6 January 2019 entered the Guinness World Records by pouring 32,100 cubic metres of concrete in 24 hours.[158] The world record for the largest continuously poured concrete raft was achieved in August 2007 in Abu Dhabi by contracting firm Al Habtoor-CCC Joint Venture and the concrete supplier is Unibeton Ready Mix.[159][160] The pour (a part of the foundation for the Abu Dhabi's Landmark Tower) was 16,000 cubic meters of concrete poured within a two-day period.[161] The previous record, 13,200 cubic meters poured in 54 hours despite a severe tropical storm requiring the site to be covered with tarpaulins to allow work to continue, was achieved in 1992 by joint Japanese and South Korean consortiums Hazama Corporation and the Samsung C&T Corporation for the construction of the Petronas Towers in Kuala Lumpur, Malaysia.[162]
The world record for largest continuously poured concrete floor was completed 8 November 1997, in Louisville, Kentucky by design-build firm EXXCEL Project Management. The monolithic placement consisted of 225,000 square feet (20,900 m2) of concrete placed in 30 hours, finished to a flatness tolerance of FF 54.60 and a levelness tolerance of FL 43.83. This surpassed the previous record by 50% in total volume and 7.5% in total area.[163][164]
The record for the largest continuously placed underwater concrete pour was completed 18 October 2010, in New Orleans, Louisiana by contractor C. J. Mahan Construction Company, LLC of Grove City, Ohio. The placement consisted of 10,251 cubic yards of concrete placed in 58.5 hours using two concrete pumps and two dedicated concrete batch plants. Upon curing, this placement allows the 50,180-square-foot (4,662 m2) cofferdam to be dewatered approximately 26 feet (7.9 m) below sea level to allow the construction of the Inner Harbor Navigation Canal Sill & Monolith Project to be completed in the dry.[165]
Concrete is used as an artistic medium.[citation needed] Its appearance is also imitated in other media: for example Congolese artist Sardoine Mia creates canvases that look like concrete surfaces.[166]
^
Gagg, Colin R. (May 2014). "Cement and concrete as an engineering material: An historic appraisal and case study analysis". Engineering Failure Analysis. 40: 114–140. doi:10.1016/j.engfailanal.2014.02.004.
^Crow, James Mitchell (March 2008). "The concrete conundrum"(PDF). Chemistry World: 62–66. Archived(PDF) from the original on 9 October 2022.
^Allen, Edward; Iano, Joseph (2013). Fundamentals of building construction: materials and methods (Sixth ed.). Hoboken: John Wiley & Sons. p. 314. ISBN978-1-118-42086-7. OCLC835621943.
^"concretus". Latin Lookup. Archived from the original on 12 May 2013. Retrieved 1 October 2012.
^ abGromicko, Nick; Shepard, Kenton (2016). "The History of Concrete". International Association of Certified Home Inspectors, Inc. Retrieved 27 December 2018.
^Moore, David (6 October 2014). "Roman Concrete Research". Romanconcrete.com. Archived from the original on 6 October 2014. Retrieved 13 August 2022.
^"The History of Concrete". Dept. of Materials Science and Engineering, University of Illinois, Urbana-Champaign. Archived from the original on 27 November 2012. Retrieved 8 January 2013.
^Lancaster, Lynne (2005). Concrete Vaulted Construction in Imperial Rome. Innovations in Context. Cambridge University Press. ISBN978-0-511-16068-4.
^Moore, David (1999). "The Pantheon". romanconcrete.com. Archived from the original on 1 October 2011. Retrieved 26 September 2011.
^D.S. Robertson (1969). Greek and Roman Architecture, Cambridge, p. 233
^Cowan, Henry J. (1977). The master builders: a history of structural and environmental design from ancient Egypt to the nineteenth century. New York: Wiley. ISBN0-471-02740-5. OCLC2896326.
^Robert Mark, Paul Hutchinson: "On the Structure of the Roman Pantheon", Art Bulletin, Vol. 68, No. 1 (1986), p. 26, fn. 5
^Kwan, Stephen; Larosa, Judith; Grutzeck, Michael W. (1995). "29Si and27Al MASNMR Study of Stratlingite". Journal of the American Ceramic Society. 78 (7): 1921–1926. doi:10.1111/j.1151-2916.1995.tb08910.x.
^Nick Gromicko & Kenton Shepard. "the History of Concrete". The International Association of Certified Home Inspectors (InterNACHI). Archived from the original on 15 January 2013. Retrieved 8 January 2013.
^ abAskarian, Mahya; Fakhretaha Aval, Siavash; Joshaghani, Alireza (22 January 2019). "A comprehensive experimental study on the performance of pumice powder in self-compacting concrete (SCC)". Journal of Sustainable Cement-Based Materials. 7 (6): 340–356. doi:10.1080/21650373.2018.1511486. S2CID139554392.
^Melander, John M.; Farny, James A.; Isberner, Albert W. Jr. (2003). "Portland Cement Plaster/Stucco Manual"(PDF). Portland Cement Association. Archived(PDF) from the original on 12 April 2021. Retrieved 13 July 2021.
^Evelien Cochez; Wouter Nijs; Giorgio Simbolotti & Giancarlo Tosato. "Cement Production"(PDF). IEA ETSAP – Energy Technology Systems Analysis Programme. Archived from the original(PDF) on 24 January 2013. Retrieved 9 January 2013.
^Gibbons, Jack (7 January 2008). "Measuring Water in Concrete". Concrete Construction. Archived from the original on 11 May 2013. Retrieved 1 October 2012.
^ abVeretennykov, Vitaliy I.; Yugov, Anatoliy M.; Dolmatov, Andriy O.; Bulavytskyi, Maksym S.; Kukharev, Dmytro I.; Bulavytskyi, Artem S. (2008). "Concrete Inhomogeneity of Vertical Cast-in-Place Elements in Skeleton-Type Buildings". AEI 2008. pp. 1–10. doi:10.1061/41002(328)17. ISBN978-0-7844-1002-8.
^Gerry Bye; Paul Livesey; Leslie Struble (2011). "Admixtures and Special Cements". Portland Cement: Third edition. doi:10.1680/pc.36116.185 (inactive 1 November 2024). ISBN978-0-7277-3611-6.cite book: CS1 maint: DOI inactive as of November 2024 (link)
^Holland, Terence C. (2005). "Silica Fume User's Manual"(PDF). Silica Fume Association and United States Department of Transportation Federal Highway Administration Technical Report FHWA-IF-05-016. Retrieved 31 October 2014.
^Kosmatka, S.; Kerkhoff, B.; Panerese, W. (2002). Design and Control of Concrete Mixtures (14 ed.). Portland Cement Association, Skokie, Illinois.
^Gamble, William. "Cement, Mortar, and Concrete". In Baumeister; Avallone; Baumeister (eds.). Mark's Handbook for Mechanical Engineers (Eighth ed.). McGraw Hill. Section 6, page 177.
^Cook, Marllon Daniel; Ghaeezadah, Ashkan; Ley, M. Tyler (1 February 2018). "Impacts of Coarse-Aggregate Gradation on the Workability of Slip-Formed Concrete". Journal of Materials in Civil Engineering. 30 (2). doi:10.1061/(ASCE)MT.1943-5533.0002126.
^Ferrari, L.; Kaufmann, J.; Winnefeld, F.; Plank, J. (October 2011). "Multi-method approach to study influence of superplasticizers on cement suspensions". Cement and Concrete Research. 41 (10): 1058–1066. doi:10.1016/j.cemconres.2011.06.010.
^Dalal, Sejal P.; Dalal, Purvang (March 2021). "Experimental Investigation on Strength and Durability of Graphene Nanoengineered Concrete". Construction and Building Materials. 276: 122236. doi:10.1016/j.conbuildmat.2020.122236. S2CID233663658.
^Dalal, Sejal P.; Desai, Kandarp; Shah, Dhairya; Prajapati, Sanjay; Dalal, Purvang; Gandhi, Vimal; Shukla, Atindra; Vithlani, Ravi (January 2022). "Strength and feasibility aspects of concrete mixes induced with low-cost surfactant functionalized graphene powder". Asian Journal of Civil Engineering. 23 (1): 39–52. doi:10.1007/s42107-021-00407-7. S2CID257110774.
^Thanmanaselvi, M; Ramasamy, V (2023). "A study on durability characteristics of nano-concrete". Materials Today: Proceedings. 80: 2360–2365. doi:10.1016/j.matpr.2021.06.349. ISSN2214-7853.
^ abcLemougna, Patrick N.; Wang, Kai-tuo; Tang, Qing; Nzeukou, A.N.; Billong, N.; Melo, U. Chinje; Cui, Xue-min (October 2018). "Review on the use of volcanic ashes for engineering applications". Resources, Conservation and Recycling. 137: 177–190. Bibcode:2018RCR...137..177L. doi:10.1016/j.resconrec.2018.05.031. S2CID117442866.
^Izzo, Francesco; Arizzi, Anna; Cappelletti, Piergiulio; Cultrone, Giuseppe; De Bonis, Alberto; Germinario, Chiara; Graziano, Sossio Fabio; Grifa, Celestino; Guarino, Vincenza; Mercurio, Mariano; Morra, Vincenzo; Langella, Alessio (August 2016). "The art of building in the Roman period (89 B.C. – 79 A.D.): Mortars, plasters and mosaic floors from ancient Stabiae (Naples, Italy)". Construction and Building Materials. 117: 129–143. doi:10.1016/j.conbuildmat.2016.04.101.
^Rubenstein, Madeleine (9 May 2012). "Emissions from the Cement Industry". State of the Planet. Earth Institute, Columbia University. Archived from the original on 22 December 2016. Retrieved 13 December 2016.
^Sadowski, Ã…ÂÂÂÂukasz; Mathia, Thomas (2016). "Multi-scale Metrology of Concrete Surface Morphology: Fundamentals and specificity". Construction and Building Materials. 113: 613–621. doi:10.1016/j.conbuildmat.2016.03.099.
^ abLarn, Richard; Whistler, Rex (1993). "17 – Underwater concreting". Commercial Diving Manual (3rd ed.). Newton Abbott, UK: David and Charles. pp. 297–308. ISBN0-7153-0100-4.
Artificial turf with rubber crumb infillSide view of artificial turfDiagram of the structure of modern artificial turfArtificial turf square mats
Artificial turf is a surface of synthetic fibers made to look like natural grass, used in sports arenas, residential lawns and commercial applications that traditionally use grass. It is much more durable than grass and easily maintained without irrigation or trimming, although periodic cleaning is required. Stadiums that are substantially covered and/or at high latitudes often use artificial turf, as they typically lack enough sunlight for photosynthesis and substitutes for solar radiation are prohibitively expensive and energy-intensive. Disadvantages include increased risk of injury especially when used in athletic competition, as well as health and environmental concerns about the petroleum and toxic chemicals used in its manufacture.
Artificial turf first gained substantial attention in 1966, when ChemGrass was installed in the year-old Astrodome, developed by Monsanto and rebranded as AstroTurf, now a generic trademark (registered to a new owner) for any artificial turf.
The first-generation system of shortpile fibers without infill of the 1960s has largely been replaced by two more. The second features longer fibers and sand infill and the third adds recycled crumb rubber to the sand. Compared to earlier systems, modern artificial turf more closely resembles grass in appearance and is also considered safer for athletic competition. However, it is still not widely considered to be equal to grass. Sports clubs, leagues, unions and individual athletes have frequently spoken out and campaigned against it, while local governments have enacted and enforced laws restricting and/or banning its use.
David Chaney, who moved to Raleigh, North Carolina, in 1960 and later served as Dean of the North Carolina State University College of Textiles, headed the team of Research Triangle Park researchers who created the first notable artificial turf. That accomplishment led Sports Illustrated to declare Chaney as the man "responsible for indoor major league baseball and millions of welcome mats."
Artificial turf was first installed in 1964 on a recreation area at the Moses Brown School in Providence, Rhode Island.[1] The material came to public prominence in 1966, when AstroTurf was installed in the Astrodome in Houston, Texas.[1] The state-of-the-art indoor stadium had attempted to use natural grass during its initial season in 1965, but this failed miserably and the field conditions were grossly inadequate during the second half of the season, with the dead grass painted green. Due to a limited supply of the new artificial grass, only the infield was installed before the Houston Astros' home opener in April 1966; the outfield was installed in early summer during an extended Astros road trip and first used after the All-Star Break in July.
The use of AstroTurf and similar surfaces became widespread in the U.S. and Canada in the early 1970s, installed in both indoor and outdoor stadiums used for baseball and football. More than 11,000 artificial turf playing fields have been installed nationally.[2] More than 1,200 were installed in the U.S. in 2013 alone, according to the industry group the Synthetic Turf Council.[2]
Tropicana Field with its artificial turf field.An artificial-turf field at a high school in Oregon.
Artificial turf was first used in Major League Baseball in the Houston Astrodome in 1966, replacing the grass field used when the stadium opened a year earlier. Even though the grass was specifically bred for indoor use, the dome's semi-transparent Lucite ceiling panels, which had been painted white to cut down on glare that bothered the players, did not pass enough sunlight to support the grass. For most of the 1965 season, the Astros played on green-painted dirt and dead grass.
The solution was to install a new type of artificial grass on the field, ChemGrass, which became known as AstroTurf. Given its early use, the term astroturf has since been genericized as a term for any artificial turf.[3] Because the supply of AstroTurf was still low, only a limited amount was available for the first home game. There was not enough for the entire outfield, but there was enough to cover the traditional grass portion of the infield. The outfield remained painted dirt until after the All-Star Break. The team was sent on an extended road trip before the break, and on 19 July 1966, the installation of the outfield portion of AstroTurf was completed.
The Chicago White Sox became the first team to install artificial turf in an outdoor stadium, as they used it only in the infield and adjacent foul territory at Comiskey Park from 1969 through 1975.[4] Artificial turf was later installed in other new multi-purpose stadiums such as Pittsburgh's Three Rivers Stadium, Philadelphia's Veterans Stadium, and Cincinnati's Riverfront Stadium. Early AstroTurf baseball fields used the traditional all-dirt path, but starting in 1970 with Cincinnati's Riverfront Stadium,[5] teams began using the "base cutout" layout on the diamond, with the only dirt being on the pitcher's mound, batter's circle, and in a five-sided diamond-shaped "sliding box" around each base. With this layout, a painted arc would indicate where the edge of the outfield grass would normally be, to assist fielders in positioning themselves properly. The last stadium in MLB to use this configuration was Rogers Centre in Toronto, when they switched to an all-dirt infield (but keeping the artificial turf) for the 2016 season.[6][7]
Artificial turf being installed on a baseball field in Queens, New York City.
The biggest difference in play on artificial turf was that the ball bounced higher than on real grass and also traveled faster, causing infielders to play farther back than they would normally so that they would have sufficient time to react. The ball also had a truer bounce than on grass so that on long throws fielders could deliberately bounce the ball in front of the player they were throwing to, with the certainty that it would travel in a straight line and not be deflected to the right or left. The biggest impact on the game of "turf", as it came to be called, was on the bodies of the players. The artificial surface, which was generally placed over a concrete base, had much less give to it than a traditional dirt and grass field did, which caused more wear-and-tear on knees, ankles, feet, and the lower back, possibly even shortening the careers of those players who played a significant portion of their games on artificial surfaces. Players also complained that the turf was much hotter than grass, sometimes causing the metal spikes to burn their feet or plastic ones to melt. These factors eventually provoked a number of stadiums, such as the Kansas City Royals' Kauffman Stadium, to switch from artificial turf back to natural grass.
In 2000, St. Petersburg's Tropicana Field became the first MLB field to use a third-generation artificial surface, FieldTurf. All other remaining artificial turf stadiums were either converted to third-generation surfaces or were replaced entirely by new natural grass stadiums. In a span of 13 years, between 1992 and 2005, the National League went from having half of its teams using artificial turf to all of them playing on natural grass. With the replacement of Minneapolis's Hubert H. Humphrey Metrodome by Target Field in 2010, only two MLB stadiums used artificial turf from 2010 through 2018: Tropicana Field and Toronto's Rogers Centre. This number grew to three when the Arizona Diamondbacks switched Chase Field to artificial turf for the 2019 season; the stadium had grass from its opening in 1998 until 2018, but the difficulty of maintaining the grass in the stadium, which has a retractable roof and is located in a desert city, was cited as the reason for the switch.[8] In 2020, Miami's Marlins Park (now loanDepot Park) also switched to artificial turf for similar reasons, while the Texas Rangers' new Globe Life Field was opened with an artificial surface, as it is also a retractable roof ballpark in a hot weather city; this puts the number of teams using synthetic turf in MLB at five as of 2023.
In 2002, CenturyLink Field, originally planned to have a natural grass field, was instead surfaced with FieldTurf upon positive reaction from the Seattle Seahawks when they played on the surface at their temporary home of Husky Stadium during the 2000 and 2001 seasons. This would be the first of a leaguewide trend taking place over the next several seasons that would not only result in teams already using artificial surfaces for their fields switching to the new FieldTurf or other similar surfaces but would also see several teams playing on grass adopt a new surface. (The Indianapolis Colts' RCA Dome and the St. Louis Rams' Edward Jones Dome were the last two stadiums in the NFL to replace their first-generation AstroTurf surfaces for next-generation ones after the 2004 season). For example, after a three-year experiment with a natural surface, Giants Stadium went to FieldTurf for 2003, while M&T Bank Stadium added its own artificial surface the same year (it has since been removed and replaced with a natural surface, which the stadium had before installing the turf). Later examples include Paul Brown Stadium (now Paycor Stadium), which went from grass to turf in 2004; Gillette Stadium, which made the switch in 2006;[9] and NRG Stadium, which did so in 2015. As of 2021, 14 NFL fields out of 30 are artificial. NFL players overwhelmingly prefer natural grass over synthetic surfaces, according to a league survey conducted in 2010. When asked, "Which surface do you think is more likely to shorten your career?", 90% responded artificial turf.[10] When players were asked "Is the Turf versus Grass debate overblown or a real concern"[11] in an anonymous player survey, 83% believe it is a real concern while 12.3% believe it is overblown.
Following receiver Odell Beckham Jr.'s injury during Super Bowl LVI, other NFL players started calling for turf to be banned since the site of the game, SoFi Stadium, was a turf field.[12]
Arena football is played indoors on the older short-pile artificial turf.
The first professional Canadian football stadium to use artificial turf was Empire Stadium in Vancouver, British Columbia, then home of the Canadian Football League's BC Lions, which installed 3M TartanTurf in 1970. Today, eight of the nine stadiums in the CFL currently use artificial turf, largely because of the harsh weather conditions in the latter-half of the season. The only one that does not is BMO Field in Toronto, which initially had an artificial pitch and has been shared by the CFL's Toronto Argonauts since 2016 (part of the endzones at that stadium are covered with artificial turf).[13] The first stadium to use the next-generation surface was Ottawa's Frank Clair Stadium (now TD Place Stadium), which the Ottawa Renegades used when they began play in 2002. The Saskatchewan Roughriders' Taylor Field was the only major professional sports venue in North America to use a second-generation artificial playing surface, Omniturf, which was used from 1988 to 2000, followed by AstroTurf from 2000 to 2007 and FieldTurf from 2007 to its 2016 closure.[14]
Some cricket pitches are made of synthetic grass[15] or of a hybrid of mostly natural and some artificial grass, with these "hybrid pitches" having been implemented across several parts of the United Kingdom[16] and Australia.[17] The first synthetic turf cricket field in the USA was opened in Fremont, California in 2016.[18]
The introduction of synthetic surfaces has significantly changed the sport of field hockey. Since being introduced in the 1970s, competitions in western countries are now mostly played on artificial surfaces. This has increased the speed of the game considerably and changed the shape of hockey sticks to allow for different techniques, such as reverse stick trapping and hitting.
Field hockey artificial turf differs from artificial turf for other sports, in that it does not try to reproduce a grass feel, being made of shorter fibers. This allows the improvement in speed brought by earlier artificial turfs to be retained. This development is problematic for areas which cannot afford to build an extra artificial field for hockey alone. The International Hockey Federation and manufacturers are driving research in order to produce new fields that will be suitable for a variety of sports.
The use of artificial turf in conjunction with changes in the game's rules (e.g., the removal of offside, introduction of rolling substitutes and the self-pass, and to the interpretation of obstruction) have contributed significantly to change the nature of the game, greatly increasing the speed and intensity of play as well as placing far greater demands on the conditioning of the players.
Aspmyra, Norway: home of the football club FK Bodø/GlimtA slide tackle driving up crumbed rubber in the playing surface
Some association football clubs in Europe installed synthetic surfaces in the 1980s, which were called "plastic pitches" (often derisively) in countries such as England. There, four professional club venues had adopted them; Queens Park Rangers's Loftus Road (1981–1988), Luton Town's Kenilworth Road (1985–1991), Oldham Athletic's Boundary Park (1986–1991) and Preston North End's Deepdale (1986–1994). QPR had been the first team to install an artificial pitch at their stadium in 1981, but were the first to remove it when they did so in 1988. Artificial pitches were banned from top-flight (then First Division) football in 1991, forcing Oldham Athletic to remove their artificial pitch after their promotion to the First Division in 1991, while then top-flight Luton Town also removed their artificial pitch at the same time. The last Football League team to have an artificial pitch in England was Preston North End, who removed their pitch in 1994 after eight years in use. Artificial pitches were banned from the top four divisions from 1995.
Artificial turf gained a bad reputation[neutrality is disputed] globally, with fans and especially with players. The first-generation artificial turf surfaces were carpet-like in their look and feel, and thus, a far harder surface than grass and soon became known[by whom?] as an unforgiving playing surface that was prone to cause more injuries, and in particular, more serious joint injuries, than would comparatively be suffered on a grass surface. This turf was also regarded as aesthetically unappealing to many fans[weasel words].
In 1981, London football club Queens Park Rangers dug up its grass pitch and installed an artificial one. Others followed, and by the mid-1980s there were four artificial surfaces in operation in the English league. They soon became a national joke: the ball pinged round like it was made of rubber, the players kept losing their footing, and anyone who fell over risked carpet burns. Unsurprisingly, fans complained that the football was awful to watch and, one by one, the clubs returned to natural grass.[19]
In the 1990s, many North American soccer clubs also removed their artificial surfaces and re-installed grass, while others moved to new stadiums with state-of-the-art grass surfaces that were designed to withstand cold temperatures where the climate demanded it. The use of artificial turf was later banned by FIFA, UEFA and by many domestic football associations, though, in recent years,[when?] both governing bodies have expressed resurrected interest in the use of artificial surfaces in competition, provided that they are FIFA Recommended. UEFA has now been heavily involved in programs to test artificial turf, with tests made in several grounds meeting with FIFA approval. A team of UEFA, FIFA and German company Polytan conducted tests in the Stadion Salzburg Wals-Siezenheim in Salzburg, Austria which had matches played on it in UEFA Euro 2008. It is the second FIFA 2 Star approved artificial turf in a European domestic top flight, after Dutch club Heracles Almelo received the FIFA certificate in August 2005.[20] The tests were approved.[21]
FIFA originally launched its FIFA Quality Concept in February 2001. UEFA announced that starting from the 2005–06 season, approved artificial surfaces were to be permitted in their competitions.
A full international fixture for the 2008 European Championships was played on 17 October 2007 between England and Russia on an artificial surface, which was installed to counteract adverse weather conditions, at the Luzhniki Stadium in Moscow.[22][23] It was one of the first full international games to be played on such a surface approved by FIFA and UEFA. The latter ordered the 2008 European Champions League final hosted in the same stadium in May 2008 to place on grass, so a temporary natural grass field was installed just for the final.
UEFA stressed that artificial turf should only be considered an option where climatic conditions necessitate.[24] One Desso "hybrid grass" product incorporates both natural grass and artificial elements.[25]
FIFA designated a star system for artificial turf fields that have undergone a series of tests that examine quality and performance based on a two star system.[26] Recommended two-star fields may be used for FIFA Final Round Competitions as well as for UEFA Europa League and Champions League matches.[27] There are currently 130 FIFA Recommended 2-Star installations in the world.[28]
In 2009, FIFA launched the Preferred Producer Initiative to improve the quality of artificial football turf at each stage of the life cycle (manufacturing, installation and maintenance).[29] Currently, there are five manufacturers that were selected by FIFA: Act Global, Limonta, Desso, GreenFields, and Edel Grass. These firms have made quality guarantees directly to FIFA and have agreed to increased research and development.
In 2010, Estadio Omnilife with an artificial turf opened in Guadalajara to be the new home of Chivas, one of the most popular teams in Mexico. The owner of Chivas, Jorge Vergara, defended the reasoning behind using artificial turf because the stadium was designed to be "environment friendly and as such, having grass would result [in] using too much water."[30] Some players criticized the field, saying its harder surface caused many injuries. When Johan Cruyff became the adviser of the team, he recommended the switch to natural grass, which the team did in 2012.[31]
In November 2011, it was reported that a number of English football clubs were interested in using artificial pitches again on economic grounds.[32] As of January 2020, artificial pitches are not permitted in the Premier League or Football League but are permitted in the National League and lower divisions. Bromley are an example of an English football club who currently use a third-generation artificial pitch.[33] In 2018, Sutton United were close to achieving promotion to the Football League and the debate in England about artificial pitches resurfaced again. It was reported that, if Sutton won promotion, they would subsequently be demoted two leagues if they refused to replace their pitch with natural grass.[34] After Harrogate Town's promotion to the Football League in 2020, the club was obliged to install a natural grass pitch at Wetherby Road;[35] and after winning promotion in 2021 Sutton Utd were also obliged to tear up their artificial pitch and replace it with grass, at a cost of more than £500,000.[36] Artificial pitches are permitted in all rounds of the FA Cup competition.
The 2015 FIFA Women's World Cup took place entirely on artificial surfaces, as the event was played in Canada, where almost all of the country's stadiums use artificial turf due to climate issues. This plan garnered criticism from players and fans, some believing the artificial surfaces make players more susceptible to injuries. Over fifty of the female athletes protested against the use of artificial turf on the basis of gender discrimination.[37][38]Australia winger Caitlin Foord said that after playing 90 minutes there was no difference to her post-match recovery – a view shared by the rest of the squad. The squad spent much time preparing on the surface and had no problems with its use in Winnipeg. "We've been training on [artificial] turf pretty much all year so I think we're kind of used to it in that way ... I think grass or turf you can still pull up sore after a game so it's definitely about getting the recovery in and getting it right", Foord said.[39] A lawsuit was filed on 1 October 2014 in an Ontario tribunal court by a group of women's international soccer players against FIFA and the Canadian Soccer Association and specifically points out that in 1994 FIFA spent $2 million to plant natural grass over artificial turf in New Jersey and Detroit.[40] Various celebrities showed their support for the women soccer players in defense of their lawsuit, including actor Tom Hanks, NBA player Kobe Bryant and U.S. men's soccer team keeper Tim Howard. Even with the possibility of boycotts, FIFA's head of women's competitions, Tatjana Haenni, made it clear that "we play on artificial turf and there's no Plan B."[41][42]
Carpet has been used as a surface for indoor tennis courts for decades, though the first carpets used were more similar to home carpets than a synthetic grass. After the introduction of AstroTurf, it came to be used for tennis courts, both indoor and outdoor, though only a small minority of courts use the surface.[44][45] Both infill and non-infill versions are used, and are typically considered medium-fast to fast surfaces under the International Tennis Federation's classification scheme.[44] A distinct form found in tennis is an "artificial clay" surface,[44] which seeks to simulate a clay court by using a very short pile carpet with an infill of the same loose aggregate used for clay courts that rises above the carpet fibers.[44]
Tennis courts such as Wimbledon are considering using an artificial hybrid grass to replace their natural lawn courts. Such systems incorporate synthetic fibers into natural grass to create a more durable surface on which to play.[46] Such hybrid surfaces are currently used for some association football stadiums, including Wembley Stadium.
Synthetic turf can also be used in the golf industry, such as on driving ranges, putting greens and even in some circumstances tee boxes. For low budget courses, particularly those catering to casual golfers, synthetic putting greens offer the advantage of being a relatively cheap alternative to installing and maintaining grass greens, but are much more similar to real grass in appearance and feel compared to sand greens which are the traditional alternative surface. Because of the vast areas of golf courses and the damage from clubs during shots, it is not feasible to surface fairways with artificial turf.
Artificial grass is used to line the perimeter of some sections of some motor circuits, and offers less grip than some other surfaces.[47] It can pose an obstacle to drivers if it gets caught on their car.[48]
Since the early 1990s, the use of synthetic grass in the more arid western states of the United States has moved beyond athletic fields to residential and commercial landscaping.[49] New water saving programs, as of 2019, which grant rebates for turf removal, do not accept artificial turf as replacement and require a minimum of plants.[50][51]
The use of artificial grass for convenience sometimes faces opposition: Legislation frequently seeks to preserve natural gardens and fully water permeable surfaces, therefore restricting the use of hardscape and plantless areas, including artificial turf. In several locations in different countries, homeowners have been fined, ordered to remove artificial turf and/or had to defend themselves in courts. Many of these restrictions can be found in local bylaws and ordinances. These not always applied in a consistent manner,[52][53][54] especially in municipalities that utilize a complaint-based model for enforcing local laws.
Sunlight reflections from nearby windows can cause artificial turf to melt. This can be avoided by adding perforated vinyl privacy window film adhesive to the outside of the window causing the reflection.
Artificial turf has been used at airports.[55] Here it provides several advantages over natural turf – it does not support wildlife, it has high visual contrast with runways in all seasons, it reduces foreign object damage (FOD) since the surface has no rocks or clumps, and it drains well.[56]
Some artificial turf systems allow for the integration of fiber-optic fibers into the turf. This would allow for runway lighting to be embedded in artificial landing surfaces for aircraft (or lighting or advertisements to be directly embedded in a playing surface).[57]
Artificial turf is commonly used for tanks containing octopusses, in particular the Giant Pacific octopus since it is a reliable way to prevent the octopusses from escaping their tank, as they prevent the suction cups on the tentacles from getting a tight seal.[58]
The first major academic review of the environmental and health risks and benefits of artificial turf was published in 2014;[59] it was followed by extensive research on possible risks to human health, but holistic analyses of the environmental footprint of artificial turf compared with natural turf only began to emerge in the 2020s,[60][61] and frameworks to support informed policymaking were still lacking.[62][63] Evaluating the relative environmental footprints of natural and artificial turf is complex, with outcomes depending on a wide range of factors, including (to give the example of a sports field):[59]
what ecosystem services are lost by converting a site to a sports pitch
how resource-intensive is the landscaping work and transport of materials to create a pitch
whether input materials are recycled and whether these are recycled again at the end of the pitch's life
how resource-intensive and damaging maintenance is (whether through water, fertiliser, weed-killer, reapplication of rubber crumb, snow-clearing, etc.)
how intensively the facility is used, for how long, and whether surface type can reduce the overall number of pitches required
Artificial turf has been shown to contribute to global warming by absorbing significantly more radiation than living turf and, to a lesser extent, by displacing living plants that could sequester carbon dioxide through photosynthesis;[64] a study at New Mexico State University found that in that environment, water-cooling of artificial turf can demand as much water as natural turf.[65] However, a 2022 study that used real-world data to model a ten-year-life-cycle environmental footprint for a new natural-turf soccer field compared with an artificial-turf field found that the natural-turf field contributed twice as much to global warming as the artificial one (largely due to a more resource-intensive construction phase), while finding that the artificial turf would likely cause more pollution of other kinds. It promoted improvements to usual practice such as the substitution of cork for rubber in artificial pitches and more drought-resistant grasses and electric mowing in natural ones.[60] In 2021, a Zurich University of Applied Sciences study for the city of Zurich, using local data on extant pitches, found that, per hour of use, natural turf had the lowest environmental footprint, followed by artificial turf with no infill, and then artificial turf using an infill (e.g. granulated rubber). However, because it could tolerate more hours of use, unfilled artificial turf often had the lowest environmental footprint in practice, by reducing the total number of pitches required. The study recommended optimising the use of existing pitches before building new ones, and choosing the best surface for the likely intensity of use.[61] Another suggestion is the introduction of green roofs to offset the conversion of grassland to artificial turf.[66]
Contrary to popular belief, artificial turf is not maintenance free. It requires regular maintenance, such as raking and patching, to keep it functional and safe.[67]
Some artificial turf uses infill such as silicon sand, but most uses granulated rubber, referred to as "crumb rubber". Granulated rubber can be made from recycled car tires and may carry heavy metals, PFAS chemicals, and other chemicals of environmental concern. The synthetic fibers of artificial turf are also subject to degradation. Thus chemicals from artificial turfs leach into the environment, and artificial turf is a source of microplasticspollution and rubber pollution in air, fresh-water, sea and soil environments.[68][69][70][71][72][73][59][excessive citations] In Norway, Sweden, and at least some other places, the rubber granulate from artificial turf infill constitutes the second largest source of microplastics in the environment after the tire and road wear particles that make up a large portion of the fine road debris.[74][75][76] As early as 2007, Environment and Human Health, Inc., a lobby-group, proposed a moratorium on the use of ground-up rubber tires in fields and playgrounds based on health concerns;[77] in September 2022, the European Commission made a draft proposal to restrict the use of microplastic granules as infill in sports fields.[78]
What is less clear is how likely this pollution is in practice to harm humans or other organisms and whether these environmental costs outweigh the benefits of artificial turf, with many scientific papers and government agencies (such as the United States Environmental Protection Agency) calling for more research.[2] A 2018 study published in Water, Air, & Soil Pollution analyzed the chemicals found in samples of tire crumbs, some used to install school athletic fields, and identified 92 chemicals only about half of which had ever been studied for their health effects and some of which are known to be carcinogenic or irritants. It stated "caution would argue against use of these materials where human exposure is likely, and this is especially true for playgrounds and athletic playing fields where young people may be affected".[79] Conversely, a 2017 study in Sports Medicine argued that "regular physical activity during adolescence and early adulthood helps prevent cancer later in life. Restricting the use or availability of all-weather year-round synthetic fields and thereby potentially reducing exercise could, in the long run, actually increase cancer incidence, as well as cardiovascular disease and other chronic illnesses."[80]
The possibility that carcinogenic substances in artificial turf could increase risks of human cancer (the artificial turf–cancer hypothesis) gained a particularly high profile in the first decades of the twenty-first century and attracted extensive study, with scientific reports around 2020 finding cancer-risks in modern artificial turf negligible.[81][82][83][84] But concerns have extended to other human-health risks, such as endocrine disruption that might affect early puberty, obesity, and children's attention spans.[85][86][87][88] Potential harm to fish[70] and earthworm[89] populations has also been shown.
A study for the New Jersey Department of Environmental Protection analyzed lead and other metals in dust kicked into the air by physical activity on five artificial turf fields. The results suggest that even low levels of activity on the field can cause particulate matter containing these chemicals to get into the air where it can be inhaled and be harmful. The authors state that since no level of lead exposure is considered safe for children, "only a comprehensive mandated testing of fields can provide assurance that no health hazard on these fields exists from lead or other metals used in their construction and maintenance."[90]
A number of health and safety concerns have been raised about artificial turf.[2] Friction between skin and older generations of artificial turf can cause abrasions and/or burns to a much greater extent than natural grass.[91] Artificial turf tends to retain heat from the sun and can be much hotter than natural grass with prolonged exposure to the sun.[92]
There is some evidence that periodic disinfection of artificial turf is required as pathogens are not broken down by natural processes in the same manner as natural grass. Despite this, a 2006 study suggests certain microbial life is less active in artificial turf.[91]
There is evidence showing higher rates of player injury on artificial turf. By November 1971, the injury toll on first-generation artificial turf had reached a threshold that resulted in congressional hearings by the House subcommittee on commerce and finance.[93][94][95] In a study performed by the National Football League Injury and Safety Panel, published in the October 2012 issue of the American Journal of Sports Medicine, Elliott B. Hershman et al. reviewed injury data from NFL games played between 2000 and 2009, finding that "the injury rate of knee sprains as a whole was 22% higher on FieldTurf than on natural grass. While MCL sprains did not occur at a rate significantly higher than on grass, rates of ACL sprains were 67% higher on FieldTurf."[96]Metatarsophalangeal joint sprain, known as "turf toe" when the big toe is involved, is named from the injury being associated with playing sports on rigid surfaces such as artificial turf and is a fairly common injury among professional American football players. Artificial turf is a harder surface than grass and does not have much "give" when forces are placed on it.[97]
^ abDave Brady, "It's All So Artificial: The Uncommon Ground", Petersen's 12th Pro Football Annual, 1972. Los Angeles: Petersen Publishing Co., 1972; pp. 62–65.
^ abcd
Weeks, Jennifer (2015). "Turf Wars". Distillations Magazine. 1 (3): 34–37. Archived from the original on 21 March 2018. Retrieved 22 March 2018.
^"Definition of Astroturf – Dictionary.com". dictionary.com. Archived from the original on 18 April 2023. Retrieved 7 May 2023. This sense of the word has come to be frequently used as a generic term for any artificial turf (in the same way that other brand names have been genericized, such as xerox). When used this way, it's often seen in lowercase (astroturf).
^"History". Saskatchewan Roughriders. 12 June 2002. Retrieved 10 January 2021. In 1988, the Roughriders replaced the first artificial turf with a new type of system called OmniTurf. Unlike AstroTurf, OmniTurf was an inlay turf system, which relied on 300 tons of sand to hold it in place (rather than the traditional glued-down system). Over the years, a number of problems occurred with this system and it eventually became necessary to replace it prior to its usable age being reached.
^ abcCheng H, Hu Y, Reinhard M (2014). "Environmental and health impacts of artificial turf: a review"(PDF). Environ Sci Technol. 48 (4): 2114–29. doi:10.1021/es4044193. PMID24467230. The major concerns stem from the infill material that is typically derived from scrap tires. Tire rubber crumb contains a range of organic contaminants and heavy metals that can volatilize into the air and/or leach into the percolating rainwater, thereby posing a potential risk to the environment and human health.
^Golden, Leslie M. (2021) "The Contribution of Artificial Turf to Global Warming," Sustainability and Climate Change, December,14 (6) 436-449; http://doi.org/10.1089/scc.2021.0038
^"Microplastics in agricultural soils: A reason to worry?". Norwegian Institute for Water Research (NIVA). 3 February 2017. Archived from the original on 19 April 2017. Retrieved 19 April 2017. Microplastics are increasingly seen as an environmental problem of global proportions. While the focus to date has been on microplastics in the ocean and their effects on marine life, microplastics in soils have largely been overlooked. Researchers are concerned about the lack of knowledge regarding potential consequences of microplastics in agricultural landscapes from application of sewage sludge.
^"Tire wear foremost source of microplastics". IVL Swedish Environmental Research Institute. 29 March 2016. Archived from the original on 19 April 2017. Retrieved 19 April 2017. researchers have ranked the sources of microplastic particles by size. The amount of microplastic particles emitted by traffic is estimated to 13 500 tonnes per year. Artificial turf ranks as the second largest source of emissions and is responsible for approximately 2300-3900 tonnes per year.
^David R. Brown, Sc.D. (2007). "Artificial Turf"(PDF). Environment & Human Health, Inc. Archived(PDF) from the original on 10 April 2008. Retrieved 21 December 2007. cite journal: Cite journal requires |journal= (help)
^Shalat SL. An evaluation of potential exposures to lead and other metals as the result of aerosolized particulate matter from artificial turf playing fields. 2011. New Jersey Department of Environmental Protection. http://www.nj.gov/dep/dsr/publications/artificial-turf-report.pdf
^C. Frank Williams, Gilbert E. Pulley (2002). "Synthetic Surface Heat Studies"(PDF). Brigham Young University. Archived(PDF) from the original on 10 April 2008. Retrieved 19 February 2008. cite journal: Cite journal requires |journal= (help)
This article incorporates text by National Center for Health Research available under the CC BY-SA 3.0 license. The text and its release have been received by the Wikimedia Volunteer Response Team
Workers were great, no problem they did what was required, but the representative of your company mislead me on what was to be done, I showed pictures from a competitor landscaper, representative stated he could bet there , , . price, but since it wasn’t in contract, I was left with uncomplicated backyard , working with owner at present, so he’s been outstanding working on this situation, as amount of rock was way off and the owner did increase the amount substantially to finish the front yard. another landscaper under contract to finish the backyard. Would like to add a comment the manger/owner of Las Vegas yard n block stands behind his words and helped me tremendously on finishing up the backyard,
Eric and team did an amazing job. They worked with me for months while I got HOA approval for the project. Once they began working they were great, going over everything in detail and making sure things were perfect. This project included wall repair, stucco and paint repair, paver and turf installation. Extremely satisfied with this experience.
Chris, the design consultant, Dave the production manager, along with their install team Opulent were affordable, upfront with costs, efficient and professional. Attached are some before and after pictures. Highly recommend their services.
My initial contact was with Ray, whom did an excellent job giving me an estimate on what I wanted done in my small yard and walkway., the guys that came out and did the work were superior. They did an excellent job. I’m very pleased with this company. I will highly recommend them to family and friends, and I will be using them in the near future for other little projects.
We recently had a very positive experience with Rock N Block for our fence replacement. The entire process went smoothly and exceeded our expectations.
Harvey and his team were incredibly professional and communicative throughout the project providing much-needed assurance and peace of mind. The crew was punctual and maintained a diligent and respectful attitude that made the experience pleasant.
The crew finished the project ahead of schedule, and the quality of their work is impressive; our new wall looks great!
We recommend Rock N Block for any fencing needs and look forward to working with them again. Thank you, Harvey and crew, for a job well done!
Workers were great, no problem they did what was required, but the representative of your company mislead me on what was to be done, I showed pictures from a competitor landscaper, representative stated he could bet there , , . price, but since it wasn’t in contract, I was left with uncomplicated backyard , working with owner at present, so he’s been outstanding working on this situation, as amount of rock was way off and the owner did increase the amount substantially to finish the front yard. another landscaper under contract to finish the backyard. Would like to add a comment the manger/owner of Las Vegas yard n block stands behind his words and helped me tremendously on finishing up the backyard,
My initial contact was with Ray, whom did an excellent job giving me an estimate on what I wanted done in my small yard and walkway., the guys that came out and did the work were superior. They did an excellent job. I’m very pleased with this company. I will highly recommend them to family and friends, and I will be using them in the near future for other little projects.
Chris, the design consultant, Dave the production manager, along with their install team Opulent were affordable, upfront with costs, efficient and professional. Attached are some before and after pictures. Highly recommend their services.
Eric and team did an amazing job. They worked with me for months while I got HOA approval for the project. Once they began working they were great, going over everything in detail and making sure things were perfect. This project included wall repair, stucco and paint repair, paver and turf installation. Extremely satisfied with this experience.